
Speeding up Kernel Testing and Debugging
with virtme-ng

Andrea Righi

Linux Plumbers Conference
Richmond, Virginia | 2023

Problem
● Testing kernels can be painful and slow

● Lots of re-deployments and reboots involved

● Wait time

● Unpredictable results

● Lack of a fast edit/compile/test cycle

Proposed solution
● Create a virtual copy of your entire system on-the-fly

● Run your kernel inside this ephemeral system

● No re-deployments involved

● Extremely fast reboots

State of the art: virtme
● Written by Andrew Lutomirski

● Tool that allows to virtualize your running system

● Boot qemu/kvm instance with a custom kernel

● Export host rootfs to the guest (9p fs) in read-only mode

● Writes allowed in a tmpfs $HOME

virtme: limitations
● Limited testing capabilities

● Performance
● Poor filesystem performance with 9p-fs

● (9p improvements with v5.15)
● Boot time not ideal

● Maintenance
● Project not maintained anymore :(

virtme-ng
● virtiofs + overlayfs

● Improve filesystem performance
● CoW live snapshot of the entire host filesystem

● qemu/kvm microVM
● Lightweight virtual platform

● virtme-ng-init
● Custom init script written in Rust

virtiofs
● Shared file system that lets virtual machines access a

directory tree on the host using FUSE / vhost-user

https://virtio-fs.gitlab.io/design.html

https://virtio-fs.gitlab.io/design.html

Replace 9p-fs with virtiofs
● $ time git diff

● Before: 284.5s
● After: 1.7s

● Boot time
● Before: 6.2s
● After: 5.2s

Overlayfs to handle writes (CoW)
● Use overlayfs to handle writes

● upperdir/workdir tmpfs→

● Automatically create overlays for the standard system
paths at boot (/usr, /etc, /var, …)

● EPERM issue with implicit overlayfs O_NOATIME (now
fixed in virtiofsd upstream)

Qemu ‘microvm’ architecture
● microvm

● virtual platform (inspired by firecraker)
● Minimalist machine type (without PCI nor ACPI)
● Optimized for boot time and memory footprint

● Boot time
● Before: 5.2s
● After: 3.8s

Kudos to Fejes Ferenc (@spyff0)

virtme-ng-init
● virtme-ng-init

● Custom init script implemented in Rust
● Replace original virtme’s init script written in bash

● Boot time
● Before: 3.8s
● After: 1.2s

Result: boot time

virtme +virtiofs +microvm +virtme-ng-init
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Boot time
se
c

● https://youtu.be/3sDkVuXVw9A

Demo

https://youtu.be/3sDkVuXVw9A

Conclusion
● virtme-ng can provide a fast edit/compile/test workflow for

kernel development

● Testing a kernel in 1.2s-1.3s is nice

● Easy to use by everyone (e.g., students, junior devs)

● Reduce power consumption required to do kernel testing

What’s next?
● Increase user base / collect feedbacks and potentially

become a standard tool for kernel dev

● systemd support

● Better support across distro

● Better snaps/flatpack support

References

● virtme-ng
https://github.com/arighi/virtme-ng

● Eco-friendly Linux kernel development: minimizing energy
consumption during CI/CD

https://lwn.net/Articles/935773/
● virtiofs

https://virtio-fs.gitlab.io/
● Qemu microVM

https://www.qemu.org/docs/master/system/i386/microvm.html

https://github.com/arighi/virtme-ng
https://lwn.net/Articles/935773/
https://virtio-fs.gitlab.io/
https://www.qemu.org/docs/master/system/i386/microvm.html

Questions?

Andrea Righi / @arighi

andrea.righi@canonical.com

github.com/arighi

mailto:andrea.righi@canonical.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Tools
	Slide 17

