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Problem
● Testing kernels can be painful and slow

● Lots of re-deployments and reboots involved

● Wait time

● Unpredictable results

● Lack of a fast edit/compile/test cycle



Proposed solution
● Create a virtual copy of your entire system on-the-fly

● Run your kernel inside this ephemeral system

● No re-deployments involved

● Extremely fast reboots



State of the art: virtme
● Written by Andrew Lutomirski

● Tool that allows to virtualize your running system

● Boot qemu/kvm instance with a custom kernel

● Export host rootfs to the guest (9p fs) in read-only mode

● Writes allowed in a tmpfs $HOME



virtme: limitations
● Limited testing capabilities

● Performance
● Poor filesystem performance with 9p-fs

● (9p improvements with v5.15)
● Boot time not ideal

● Maintenance
● Project not maintained anymore :(



virtme-ng
● virtiofs + overlayfs

● Improve filesystem performance
● CoW live snapshot of the entire host filesystem

● qemu/kvm microVM
● Lightweight virtual platform

● virtme-ng-init
● Custom init script written in Rust



virtiofs
● Shared file system that lets virtual machines access a 

directory tree on the host using FUSE / vhost-user

https://virtio-fs.gitlab.io/design.html

https://virtio-fs.gitlab.io/design.html


Replace 9p-fs with virtiofs
● $ time git diff

● Before: 284.5s
● After:    1.7s

● Boot time
● Before: 6.2s
● After:  5.2s



Overlayfs to handle writes (CoW)
● Use overlayfs to handle writes

● upperdir/workdir   tmpfs→

● Automatically create overlays for the standard system 
paths at boot (/usr, /etc, /var, …)

● EPERM issue with implicit overlayfs O_NOATIME (now 
fixed in virtiofsd upstream)



Qemu ‘microvm’ architecture
● microvm

● virtual platform (inspired by firecraker)
● Minimalist machine type (without PCI nor ACPI)
● Optimized for boot time and memory footprint

● Boot time
● Before: 5.2s
● After:  3.8s

Kudos to Fejes Ferenc (@spyff0)



virtme-ng-init
● virtme-ng-init

● Custom init script implemented in Rust
● Replace original virtme’s init script written in bash

● Boot time
● Before: 3.8s
● After:  1.2s



Result: boot time

virtme +virtiofs +microvm +virtme-ng-init
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● https://youtu.be/3sDkVuXVw9A

Demo

https://youtu.be/3sDkVuXVw9A


Conclusion
● virtme-ng can provide a fast edit/compile/test workflow for 

kernel development

● Testing a kernel in 1.2s-1.3s is nice

● Easy to use by everyone (e.g., students, junior devs)

● Reduce power consumption required to do kernel testing



What’s next?
● Increase user base / collect feedbacks and potentially 

become a standard tool for kernel dev

● systemd support

● Better support across distro

● Better snaps/flatpack support
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Questions?

Andrea Righi / @arighi

andrea.righi@canonical.com

github.com/arighi
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