
Nouveau GSP
GPU VA management

Dave Airlie
Red Hat Distinguished Engineer

airlied@redhat.com

What is GSP?

HW

FWFW

Kernel driver

Userspace
drivers

HW

FWFW

Kernel driver

Userspace
drivers

GSP FW

GSP Pros/Cons?

● Pros
○ Reclocking is possible
○ Same firmware as NVIDIA uses

● Cons
○ No stable ABI

■ 100s of RPCs not really documented
○ Large firmware files

■ (/boot and initramfs sizes)

Nouveau + GSP current status

● Refactoring and preparation
● Initial GSP support for one firmware

○ Merged for 6.7-rc1
● Missing features

○ Fault handling
○ Sensor monitoring

● Future features
○ Dynamic ABI generation (rust?)

GPU memory management - history

● VRAM/GTT
● Kernel relocations
● Virtual memory

○ per-context/process

GPU memory management

● GEM for buffer object management
● TTM for discrete VRAM buffer object management
● syncobjs/fences for synchronising buffer operations
● Initial VA in-kernel tied to buffer object

○ Sufficient for OpenGL
○ Not future proof

Vulkan requirements

● Vulkan introduces sparse memory
○ Userspace VA management
○ Sync and async (pipelined) VA updates

● Drivers started inventing VA management
● VM_BIND

Common code for acceleration

● Modesetting framework/atomic
● Accel common code

○ Scheduler
○ TTM

● GPU VA management

GPU Virtual Memory Manager - GPUVM

● Inspired by amdgpu code
● Hopefully useful for all drivers

○ Nouveau, xe, panfrost
● Porting possibilities

○ amdgpu, msm
● Many iterations

○ Tried using maple trees

The great fence signaling critical section

● dma-fence waits have to be bounded
○ Memory management deadlocks otherwise

● Can be called from the shrinker
● Limits operations in certain fence signalling critical

sections
○ Like memory allocations
○ Always using GFP_ATOMIC not a great plan

Nouveau: current status

● Initial VM_BIND UAPI
○ GPUVM
○ Syncobj + scheduler integration
○ Upstream in 6.6

● Improvements to gpuvm/scheduler
○ In progress for 6.8

Userspace

● NVK project - Vulkan driver for nouveau
● Initial bringup using old codegen compiler
● NAK - New compiler backend

○ Merged into mesa master last night
○ Running much faster than codegen

● Close to Vulkan 1.0/1.1 conformance on Turing

Questions/Demo?

