
 

Hunting Heisenbugs
Heisenbugs and impressionism:  The closer you 
get, the less you see!

© 2023 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

Linux Plumbers Conference Refereed Track, November 14, 2023



2

Overview

● Heisenbugs, Then and Now
● How to Hunt Heisenbugs
● Heisenbugs: The Goal



3

Overview

● Heisenbugs, Then and Now
● How to Hunt Heisenbugs
● Heisenbugs: The Goal

How to avoid hunting heisenbugs!!!
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Heisenbugs, Then and Now
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Heisenbugs, Then and Now

● Heisenbugs used to result in horrible life-
changing experiences

● But they are increasingly just “Tuesday”
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Fleets as Heisenbug Detectors
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After Heisenbug Detected?

● Debug based on console output
● Collect debug information via BPF
● Collect debug information via kernel patch
● Set up kernel debugger
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After Heisenbug Detected?
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● Set up kernel debugger

One failure per 4K systems per week (70-year single-system MTBF)
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After Heisenbug Detected?

● Debug based on console output
● Collect debug information via BPF
● Collect debug information via kernel patch
● Set up kernel debugger

Except that 1M instances of kgdb is not fun...Nor is waiting for your alleged fix to deploy!!!

Need a better way
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But What If I Don’t Have A Big Fleet?

● I hunted heisenbugs long before “having” a fleet!!!
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But What If I Don’t Have A Big Fleet?

● I hunted heisenbugs long before “having” a fleet!!!
● Tens of billions of Linux instances

– Good to have fewer things going bump in the night
● Potential safety-critical benefit

– Whether we like it or not, Linux kernel is already increasingly 
used in safety-critical applications

– Acceptance test suffices in many cases
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Key Heisenbug-Hunting Trick
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● Why is it a heisenbug?
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Key Heisenbug-Hunting Trick

● Why is it a heisenbug?
● Because it occurs only rarely
● Any added debugging changes timing
● Slight changes in timing can reduce incidence

Anti-H
eisenbug:

Reduce MTBF!!!
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What If I Do Have a Fleet?

● One-week test on 50 systems to validate to run 
for one year on 1M systems?
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What If I Do Have a Fleet?

● One-week test on 50 systems to validate to run 
for one year on 1M systems?
– MTBF of test systems must be six orders of 

magnitude shorter than MTBF of fleet systems
– In many cases, this is eminently doable
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How to Hunt Heisenbugs
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Increase Workload Intensity

● Leverage the philosophy of my high-school 
track and cross-country coach
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Increase Workload Intensity

● Leverage the philosophy of my high-school 
track and cross-country coach

Race days were the easy days
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Increase Workload Intensity: Kernel

● Most production systems major in userspace 
execution (if not idle!)
– 10% kernel utilization is high
– A few percent kernel utilization is commonplace
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Increase Workload Intensity: Kernel

● Most production systems major in userspace 
execution (if not idle!)
– 10% kernel utilization is high
– A few percent kernel utilization is commonplace

● One-to-two orders of magnitude MTBF 
reduction just by focusing on kernel execution!rcutorture majors in thisAnti-Heisenbug:

Increase Intensity!!!
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Increase Workload Intensity: Kernel

● Special case of testing suspicious subsystems 
in isolation

● Configure application to beat up kernel
● Run kernel portion of workload from traces 

taken from application
● Increase CPUs, memory, I/O, ...
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in isolation
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● Run kernel portion of workload from traces 

taken from application
● Increase CPUs, memory, I/O, ...

Ask yourself:

What has caused trouble in the past?
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Increase Workload Intensity: Kernel

● Special case of testing suspicious subsystems 
in isolation

● Configure application to beat up kernel
● Run kernel portion of workload from traces 

taken from application
● Increase CPUs, memory, I/O, ...

Ask yourself:

What has caused trouble in the past?Anti-Heisenbug:

Look for and promote trouble!!!
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Workload-Intensity Caution: Latency

● Increasing load normally increases delays
– Scheduler queueing
– Lock contention
– Memory contention
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Theoretical Latency: M/M/1 Queue
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Theoretical Latency: M/M/1 Queue
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Theoretical Latency: M/M/1 Queue

Latency blows up at full utilization!
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Theoretical Latency: M/M/1 Queue

Latency blows up at full utilization!
In theory, that is...
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Queues Are Finite!!!  M/M/1/k Queue
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Latency From Finite Queueing
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Latency From Finite Queueing

Still m
ight need to adjust tim

eouts!!!
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Inject Strategic Delays
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Inject Strategic Delays

● Intensify one part of the workload by de-intensifying 
another

● Examples:
– Running on multi-socket systems injects cache-miss latencies *
– rcutorture injects delays during grace-period initialization to 

promote races with CPU-hotplug operations
– Old days: Run CPUs at different speeds

* https://paulmck.livejournal.com/62071.html
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RCU CPU-Hotplug Strategic Delays

● RCU need not wait on offline CPUs
– Nor on CPUs that online after grace period start

● Though it is OK to wait on them
– But RCU does need to be clear on whether or not it 

needs to wait on a given CPU
– And RCU does need to “keep its own books” on 

which CPUs are online
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RCU CPU-Hotplug Strategic Delays

AbCho
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RCU Grace-period initialization:
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Count Near Misses
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Count Near Misses

● USA FAA requires reporting of near misses *
– Higher probability of near miss than of collision

● Near misses can help hunting heisenbugs
– More quickly evaluate commits, configurations, and 

effectiveness of other anti-heisenbugs
– Especially helpful when verifying fixes

* https://www.faa.gov/air_traffic/publications/atpubs/aim_html/chap7_section_7.html
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Erroneous RCU reader

Count Near Misses: RCU Example
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Erroneous RCU reader

Near-miss RCU reader
Correct RCU reader

Count Near Misses: RCU Example
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Erroneous RCU reader

Near-miss RCU reader
Correct RCU reader

Count Near Misses: RCU Example
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Near misses 2 OOM more

frequent than actual errorsAnti-Heisenbug:

Count near misses!!!
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Make Rare Events Happen Frequently
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Make Rare Events Happen Frequently

● Utilization, redux
● Force rare error conditions
● Force rare slowpath execution
● Add delays to race-prone code
● “The nuclear option”
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Utilization and Rare Events
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Utilization and Rare Events

Choose queue size k=10
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Utilization and Rarity of Events
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Utilization and Rarity of Events

Anti-Heisenbug:

Swamp queues!!!
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Utilization and Rarity of Events

Anti-Heisenbug:

Swamp queues!!!
But it is not just queues...
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DYNIX/ptx Memory Allocator ca. 1993
P

er
-C

P
U

ca
ch

es

B
lo

ck
s

G
lo

ba
l

ca
ch

e

B
lo

ck
s

C
oa

le
sc

e 
to

 P
ag

es

P
ag

es

C
oa

le
sc

e 
to

2M
B

 V
M

 B
lo

ck
s

P
ag

es
 &

V
M

 B
lo

ck
s

S
ys

te
m

 M
em

or
y

Later on added per-NUMA-node caches
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DYNIX/ptx Memory Allocator ca. 1993
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Later on added per-NUMA-node caches

Similar state structure to queues!!!
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Shared Disks For Availability Win!!!

Database
Server

Database
Server
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Shared Disks For Availability Win!!!

Database
Server

Database
Server

Parallel memory allocation needed

for distributed lock manager
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Shared Disks For Availability Win!!!

Database
Server

Database
Server

All data is still accessible!!!  Of course, sites should test this frequently...
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Shared Disks For Availability Win!!!

Database
Server

Database
Server

All data is still accessible!!!  Of course, sites should test this frequently...

But not necessarily every evening!!!
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Chaos-Monkey Challenges

● Crash dump was a complete disaster area
– No hints for on-site debugging instrumentation

● Eventually found test case: 5-27-hour MTBF
– But need week-long test for any alleged fix!!!
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Hint From Stack Trace

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vta || vadr < vta)
    vta = vta[idx – 1];

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]
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Hint From Stack Trace: Compiler Fun

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vata[idx] ||
     vadr < vata[idx])
    vta = vta[idx – 1];
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Hint From Stack Trace: Compiler Fun

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

int idx = vadr / (2 * MB);
void *vta;

vta = READ_ONCE(vata[idx]);
if (!vta || vadr < vta)
    vta = vta[idx – 1];
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DYNIX/ptx Memory Allocator ca. 1993
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DYNIX/ptx Memory Allocator ca. 1993
P

er
-C

P
U

ca
ch

es

B
lo

ck
s

G
lo

ba
l

ca
ch

e

B
lo

ck
s

C
oa

le
sc

e 
to

 P
ag

es

P
ag

es

C
oa

le
sc

e 
to

2M
B

 V
M

 B
lo

ck
s

P
ag

es
 &

V
M

 B
lo

ck
s

S
ys

te
m

 M
em

or
y

Rare
 ev

en
t

~6
 O

OM!!!

Focused test reduced MTBF to 12 minutes, 1-2 OOM better than stress test
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Focused Test vs. Stress Test

Focused Test Stress test Existing testing
MTBF 12 minutes 5 to 27 hours Infinite?
Basis Exact bug Customer workload Past experience

Hardware Minimal A few large systems Many systems
Development Day or two Few person-weeks Large over years
Applicability Narrow * Modest Wide

Impact Profound contention Heavy load Wide variation

* No I/O, few tasks, modest stress on scheduler, almost no userspace
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DYNIX/ptx Memory Allocator ca. 1993
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Focused test reduced MTBF to 12 minutes, 1-2 OOM better than stress test

Are your fastpaths hiding bugs???
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DYNIX/ptx Memory Allocator ca. 1993
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Focused test reduced MTBF to 12 minutes, 1-2 OOM better than stress test

Are your fastpaths hiding bugs???Anti-Heisenbug:

De-emphasize fastpaths!!!
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DYNIX/ptx Memory Allocator ca. 1993
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Focused test reduced MTBF to 12 minutes, 1-2 OOM better than stress test

Are your fastpaths hiding bugs???Anti-Heisenbug:

De-emphasize fastpaths!!!

Performance and scalability???
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Safely Disabling Fastpaths: Options
● Run on small systems

– Four-CPU guest OSes for the win!
● Accept massive contention
● Run code developed for old systems on newer 

highly integrated systems
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Hardware Latency Trends

Year Sockets CPUs CAS Latency (ns)
2008 4 16 95.9
2017 1 56 101.9

2017 4 224 442.9
2022 2 224 147.0
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Hardware Latency Trends

Year Sockets CPUs CAS Latency (ns)
2008 4 16 95.9
2017 1 56 101.9

2017 4 224 442.9
2022 2 224 147.0

Newer systems handle memory

contention better

Fewer fastpaths?  Larger systems?  Decisions, decisions...
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Overlapping RCU Readers

rcu_read_lock();
preempt_disable();
rcu_read_unlock();
local_irq_disable();
preempt_enable();
local_bh_disable();
local_irq_enable();
local_bh_enable();
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Overlapping RCU Readers

rcu_read_lock();
preempt_disable();
rcu_read_unlock();
local_irq_disable();
preempt_enable();
local_bh_disable();
local_irq_enable();
local_bh_enable();Rare combination unless you are

running rcutorture
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Other Rare Events

● Transitions to and from RCU idle
● CPU hotplug operations (boot and suspend)
● RCU callback flooding
● Memory near-exhaustion
● Transparent hugepage split/coalescing
● And many many more...
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Other Rare Events

● Transitions to and from RCU idle
● CPU hotplug operations (boot and suspend)
● RCU callback flooding
● Memory near-exhaustion
● Transparent hugepage split/coalescing
● And many many more

Combine rare events:

multiplicative

decreases in MTBF
Anti-Heisenbug:

Combine rare events!!!

If you must choose, choose the
events causing the most trouble
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Detect, Then Instrument
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Detect, Then Instrument

● In theory, code executed after the heisenbug 
occurs does not affect MTBF
– In practice, code-size changes can affect MTBF, but 

this is relatively rare, at least until you count on it
● Two tales of timers…



83

Cartoon of RCU Grace Periods

Time

Initialize
Grace
Period

Force
Quiescent

States

Force
Quiescent

States

Repeat every few milliseconds
until all CPUs and/or tasks are accounted for

Force
Quiescent

States

Clean up
After

Grace
Period
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Cartoon of RCU Grace Periods

Time

Initialize
Grace
Period

Force
Quiescent

States

Force
Quiescent

States

Repeat every few milliseconds
until all CPUs and/or tasks are accounted for

Force
Quiescent

States

Clean up
After

Grace
Period

Stuck

Here!
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Cartoon of RCU Grace Periods

Time

Initialize
Grace
Period

Force
Quiescent

States

Force
Quiescent

States

Repeat every few milliseconds
until all CPUs and/or tasks are accounted for

Force
Quiescent

States

Clean up
After

Grace
Period

Stuck

Here!

100s of hours MTBF!!!

Adding debugging hides heisenbug!!!
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Hunting Stuck-GP Heisenbug

● About a year to reduce MTBF to ~300 hours
– Choose .config to increase MTBF
– Increase rate of CPU-hotplug operations
– Debug still hides heisenbug
– RCU CPU stall warning restores forward progress
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Hunting Stuck-GP Heisenbug

● About a year to reduce MTBF to ~300 hours
– Choose .config to increase MTBF
– Increase rate of CPU-hotplug operations
– Debug still hides heisenbug
– RCU CPU stall warning restores forward progress

Add debug after detection!!!
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Adding Debug After Detection

● If timer took more than eight seconds and more 
than three times as long as was requested, 
dump debugging information
– Heuristic, but good enough in this case
– Bug was due to an interaction between timers, CPU 

hotplug, and RCU
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Adding Debug After Detection

● If timer took more than eight seconds and more 
than three times as long as was requested, 
dump debugging information
– Heuristic, but good enough in this case
– Bug was due to an interaction between timers, CPU 

hotplug, and RCU
– Recent bug between workqueues and RCU?
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Adding Debug After Detection

● If timer took more than eight seconds and more 
than three times as long as was requested, 
dump debugging information
– Heuristic, but good enough in this case
– Bug was due to an interaction between timers, CPU 

hotplug, and RCU
– Recent bug between workqueues and RCU?Post-facto debug did not increase

MTBF!!!
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Adding Debug After Detection

● If timer took more than eight seconds and more 
than three times as long as was requested, 
dump debugging information
– Heuristic, but good enough in this case
– Bug was due to an interaction between timers, CPU 

hotplug, and RCU
– Recent bug between workqueues and RCU?Post-facto debug did not increase

MTBF!!!

Anti-heisenbug: Add debugging

after bug is detected!!!
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Taking This One Step Further...

● When rare combination of events takes system 
to a legal but vulnerable state, start the system 
in that state
– The nuclear option: White-box testing
– Exhaustive state testing of rcu_segcblist

● Done in userspace
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Taking This One Step Further...

● When rare combination of events takes system 
to a legal but vulnerable state, start the system 
in that state
– The nuclear option: White-box testing
– Exhaustive state testing of rcu_segcblist

● Done in userspaceAnti-heisenbug: Force rare

risky legal states!!!
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Heisenbugs: The Goal
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Heisenbugs: The Goal

● What is better than being proficient at hunting 
heisenbugs?
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Heisenbugs: The Goal

● What is better than being proficient at hunting 
heisenbugs?

● Not having heisenbugs in the first place!!!
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How to Avoid Hunting Heisenbugs
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How to Avoid Hunting Heisenbugs

● No easy way out, but:
– Careful concurrency-first design
– Thorough unit testing, including stress testing
– Thorough integration testing
– Stringent code-review process
– Verification, if applicable
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How to Avoid Hunting Heisenbugs

● No easy way out, but:
– Careful concurrency-first design
– Thorough unit testing, including stress testing
– Thorough integration testing
– Stringent code-review process
– Verification, if applicableAnti-heisenbug: Don’t randomly

hack concurrent code!!!
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Summary: How to Hunt Heisenbugs
● Create anti-heisenbugs

– Reduce MTBF
– Increase workload intensity
– Look for and promote trouble
– Inject strategic delays
– Count near misses
– Swamp queues
– De-emphasize fastpaths
– Combine rare events
– Add debugging after bug is detected
– Force rare risky legal states (whitebox)

● Avoid (many) heisenbugs
– Careful concurrency-first design
– Thorough unit testing, including 

stress testing
– Thorough integration testing
– Stringent code-review process
– Verification, if applicable
– Don’t randomly hack concurrent 

code!!!
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Summary: How to Hunt Heisenbugs
● Create anti-heisenbugs

– Reduce MTBF
– Increase workload intensity
– Look for and promote trouble
– Inject strategic delays
– Count near misses
– Swamp queues
– De-emphasize fastpaths
– Combine rare events
– Add debugging after bug is detected
– Force rare risky legal states (whitebox)

● Avoid (many) heisenbugs
– Careful concurrency-first design
– Thorough unit testing, including 

stress testing
– Thorough integration testing
– Stringent code-review process
– Verification, if applicable
– Don’t randomly hack concurrent 

code!!!
No “silver bullet”, but many

useful techniques
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Questions?
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Backup
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Finite Requests into Finite Queue
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Finite Requests into Finite Queue
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