

Hunting Heisenbugs
Heisenbugs and impressionism: The closer you
get, the less you see!

© 2023 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

Linux Plumbers Conference Refereed Track, November 14, 2023

2

Overview

● Heisenbugs, Then and Now
● How to Hunt Heisenbugs
● Heisenbugs: The Goal

3

Overview

● Heisenbugs, Then and Now
● How to Hunt Heisenbugs
● Heisenbugs: The Goal

How to avoid hunting heisenbugs!!!

4

Heisenbugs, Then and Now

5

Heisenbugs, Then and Now

● Heisenbugs used to result in horrible life-
changing experiences

● But they are increasingly just “Tuesday”

6

Fleets as Heisenbug Detectors

7

After Heisenbug Detected?

● Debug based on console output
● Collect debug information via BPF
● Collect debug information via kernel patch
● Set up kernel debugger

8

After Heisenbug Detected?

● Debug based on console output
● Collect debug information via BPF
● Collect debug information via kernel patch
● Set up kernel debugger

One failure per 4K systems per week (70-year single-system MTBF)

9

After Heisenbug Detected?

● Debug based on console output
● Collect debug information via BPF
● Collect debug information via kernel patch
● Set up kernel debugger

10

After Heisenbug Detected?

● Debug based on console output
● Collect debug information via BPF
● Collect debug information via kernel patch
● Set up kernel debugger

Except that 1M instances of kgdb is not fun...

11

After Heisenbug Detected?

● Debug based on console output
● Collect debug information via BPF
● Collect debug information via kernel patch
● Set up kernel debugger

Except that 1M instances of kgdb is not fun...Nor is waiting for your alleged fix to deploy!!!

12

After Heisenbug Detected?

● Debug based on console output
● Collect debug information via BPF
● Collect debug information via kernel patch
● Set up kernel debugger

Except that 1M instances of kgdb is not fun...Nor is waiting for your alleged fix to deploy!!!

Need a better way

13

But What If I Don’t Have A Big Fleet?

● I hunted heisenbugs long before “having” a fleet!!!

14

But What If I Don’t Have A Big Fleet?

● I hunted heisenbugs long before “having” a fleet!!!
● Tens of billions of Linux instances

– Good to have fewer things going bump in the night
● Potential safety-critical benefit

– Whether we like it or not, Linux kernel is already increasingly
used in safety-critical applications

– Acceptance test suffices in many cases

15

Key Heisenbug-Hunting Trick

16

Key Heisenbug-Hunting Trick

● Why is it a heisenbug?

17

Key Heisenbug-Hunting Trick

● Why is it a heisenbug?
● Because it occurs only rarely
● Any added debugging changes timing
● Slight changes in timing can reduce incidence

18

Key Heisenbug-Hunting Trick

● Why is it a heisenbug?
● Because it occurs only rarely
● Any added debugging changes timing
● Slight changes in timing can reduce incidence

Anti-H
eisenbug:

Reduce MTBF!!!

19

What If I Do Have a Fleet?

● One-week test on 50 systems to validate to run
for one year on 1M systems?

20

What If I Do Have a Fleet?

● One-week test on 50 systems to validate to run
for one year on 1M systems?
– MTBF of test systems must be six orders of

magnitude shorter than MTBF of fleet systems

21

What If I Do Have a Fleet?

● One-week test on 50 systems to validate to run
for one year on 1M systems?
– MTBF of test systems must be six orders of

magnitude shorter than MTBF of fleet systems
– In many cases, this is eminently doable

22

How to Hunt Heisenbugs

23

Increase Workload Intensity

● Leverage the philosophy of my high-school
track and cross-country coach

24

Increase Workload Intensity

● Leverage the philosophy of my high-school
track and cross-country coach

Race days were the easy days

25

Increase Workload Intensity: Kernel

● Most production systems major in userspace
execution (if not idle!)
– 10% kernel utilization is high
– A few percent kernel utilization is commonplace

26

Increase Workload Intensity: Kernel

● Most production systems major in userspace
execution (if not idle!)
– 10% kernel utilization is high
– A few percent kernel utilization is commonplace

● One-to-two orders of magnitude MTBF
reduction just by focusing on kernel execution!

27

Increase Workload Intensity: Kernel

● Most production systems major in userspace
execution (if not idle!)
– 10% kernel utilization is high
– A few percent kernel utilization is commonplace

● One-to-two orders of magnitude MTBF
reduction just by focusing on kernel execution!rcutorture majors in this

28

Increase Workload Intensity: Kernel

● Most production systems major in userspace
execution (if not idle!)
– 10% kernel utilization is high
– A few percent kernel utilization is commonplace

● One-to-two orders of magnitude MTBF
reduction just by focusing on kernel execution!rcutorture majors in thisAnti-Heisenbug:

Increase Intensity!!!

29

Increase Workload Intensity: Kernel

● Special case of testing suspicious subsystems
in isolation

● Configure application to beat up kernel
● Run kernel portion of workload from traces

taken from application
● Increase CPUs, memory, I/O, ...

30

Increase Workload Intensity: Kernel

● Special case of testing suspicious subsystems
in isolation

● Configure application to beat up kernel
● Run kernel portion of workload from traces

taken from application
● Increase CPUs, memory, I/O, ...

Ask yourself:

What has caused trouble in the past?

31

Increase Workload Intensity: Kernel

● Special case of testing suspicious subsystems
in isolation

● Configure application to beat up kernel
● Run kernel portion of workload from traces

taken from application
● Increase CPUs, memory, I/O, ...

Ask yourself:

What has caused trouble in the past?Anti-Heisenbug:

Look for and promote trouble!!!

32

Workload-Intensity Caution: Latency

● Increasing load normally increases delays
– Scheduler queueing
– Lock contention
– Memory contention

33

Theoretical Latency: M/M/1 Queue

34

Theoretical Latency: M/M/1 Queue

35

Theoretical Latency: M/M/1 Queue

Latency blows up at full utilization!

36

Theoretical Latency: M/M/1 Queue

Latency blows up at full utilization!
In theory, that is...

37

Queues Are Finite!!! M/M/1/k Queue

38

Latency From Finite Queueing

39

Latency From Finite Queueing

Still m
ight need to adjust tim

eouts!!!

40

Inject Strategic Delays

41

Inject Strategic Delays

● Intensify one part of the workload by de-intensifying
another

● Examples:
– Running on multi-socket systems injects cache-miss latencies *
– rcutorture injects delays during grace-period initialization to

promote races with CPU-hotplug operations
– Old days: Run CPUs at different speeds

* https://paulmck.livejournal.com/62071.html

42

RCU CPU-Hotplug Strategic Delays

● RCU need not wait on offline CPUs
– Nor on CPUs that online after grace period start

● Though it is OK to wait on them
– But RCU does need to be clear on whether or not it

needs to wait on a given CPU
– And RCU does need to “keep its own books” on

which CPUs are online

43

RCU CPU-Hotplug Strategic Delays

AbCho
*

ICwb
*

* Apply buffered
CPU-hotplug
operations

* Initialize
CPU-waiting

bitmasks
Strategic delay

C
P

U
-h

ot
pl

ug
op

er
at

io
n

Time

RCU Grace-period initialization:

44

Count Near Misses

45

Count Near Misses

● USA FAA requires reporting of near misses *
– Higher probability of near miss than of collision

● Near misses can help hunting heisenbugs
– More quickly evaluate commits, configurations, and

effectiveness of other anti-heisenbugs
– Especially helpful when verifying fixes

* https://www.faa.gov/air_traffic/publications/atpubs/aim_html/chap7_section_7.html

46

Erroneous RCU reader

Count Near Misses: RCU Example

Time

ca
ll
_r

cu
()

C
al

lb
ac

k
in

vo
ca

tio
n

G
ra

ce
-p

er
io

d
st

ar
t

G
ra

ce
-p

er
io

d
en

d

Near-miss RCU reader
Correct RCU reader

47

Erroneous RCU reader

Near-miss RCU reader
Correct RCU reader

Count Near Misses: RCU Example

Time

ca
ll
_r

cu
()

C
al

lb
ac

k
in

vo
ca

tio
n

G
ra

ce
-p

er
io

d
st

ar
t

G
ra

ce
-p

er
io

d
en

d

Near misses 2 OOM more

frequent than actual errors

48

Erroneous RCU reader

Near-miss RCU reader
Correct RCU reader

Count Near Misses: RCU Example

Time

ca
ll
_r

cu
()

C
al

lb
ac

k
in

vo
ca

tio
n

G
ra

ce
-p

er
io

d
st

ar
t

G
ra

ce
-p

er
io

d
en

d

Near misses 2 OOM more

frequent than actual errorsAnti-Heisenbug:

Count near misses!!!

49

Make Rare Events Happen Frequently

50

Make Rare Events Happen Frequently

● Utilization, redux
● Force rare error conditions
● Force rare slowpath execution
● Add delays to race-prone code
● “The nuclear option”

51

Utilization and Rare Events

52

Utilization and Rare Events

Choose queue size k=10

53

Utilization and Rarity of Events

54

Utilization and Rarity of Events

Anti-Heisenbug:

Swamp queues!!!

55

Utilization and Rarity of Events

Anti-Heisenbug:

Swamp queues!!!
But it is not just queues...

56

DYNIX/ptx Memory Allocator ca. 1993
P

er
-C

P
U

ca
ch

es

B
lo

ck
s

G
lo

ba
l

ca
ch

e

B
lo

ck
s

C
oa

le
sc

e
to

 P
ag

es

P
ag

es

C
oa

le
sc

e
to

2M
B

 V
M

 B
lo

ck
s

P
ag

es
 &

V
M

 B
lo

ck
s

S
ys

te
m

 M
em

or
y

Later on added per-NUMA-node caches

57

DYNIX/ptx Memory Allocator ca. 1993
P

er
-C

P
U

ca
ch

es

B
lo

ck
s

G
lo

ba
l

ca
ch

e

B
lo

ck
s

C
oa

le
sc

e
to

 P
ag

es

P
ag

es

C
oa

le
sc

e
to

2M
B

 V
M

 B
lo

ck
s

P
ag

es
 &

V
M

 B
lo

ck
s

S
ys

te
m

 M
em

or
y

Later on added per-NUMA-node caches

Similar state structure to queues!!!

58

Shared Disks For Availability Win!!!

Database
Server

Database
Server

59

Shared Disks For Availability Win!!!

Database
Server

Database
Server

Parallel memory allocation needed

for distributed lock manager

60

Shared Disks For Availability Win!!!

Database
Server

Database
Server

All data is still accessible!!! Of course, sites should test this frequently...

61

Shared Disks For Availability Win!!!

Database
Server

Database
Server

All data is still accessible!!! Of course, sites should test this frequently...

But not necessarily every evening!!!

62

Chaos-Monkey Challenges

● Crash dump was a complete disaster area
– No hints for on-site debugging instrumentation

● Eventually found test case: 5-27-hour MTBF
– But need week-long test for any alleged fix!!!

63

Hint From Stack Trace

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vta || vadr < vta)
 vta = vta[idx – 1];

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

64

Hint From Stack Trace: Compiler Fun

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

int idx = vadr / (2 * MB);
void *vta;

vta = vata[idx];
if (!vata[idx] ||
 vadr < vata[idx])
 vta = vta[idx – 1];

65

Hint From Stack Trace: Compiler Fun

0MB

2MB

4MB

6MB

8MB

10MB

Aligned memory
region

Unaligned memory
region

Virtual Addresses

0:0MB

1:2MB

2:4MB

3:6MB

4:8MB

5:10MB

6:12MB

Unaligned memory
region

Virtual Address
Tracking Array
vata[512]

int idx = vadr / (2 * MB);
void *vta;

vta = READ_ONCE(vata[idx]);
if (!vta || vadr < vta)
 vta = vta[idx – 1];

66

DYNIX/ptx Memory Allocator ca. 1993
P

er
-C

P
U

ca
ch

es

B
lo

ck
s

G
lo

ba
l

ca
ch

e

B
lo

ck
s

C
oa

le
sc

e
to

 P
ag

es

P
ag

es

C
oa

le
sc

e
to

2M
B

 V
M

 B
lo

ck
s

P
ag

es
 &

V
M

 B
lo

ck
s

S
ys

te
m

 M
em

or
y

Rare
 ev

en
t

~6
 O

OM!!!

67

DYNIX/ptx Memory Allocator ca. 1993
P

er
-C

P
U

ca
ch

es

B
lo

ck
s

G
lo

ba
l

ca
ch

e

B
lo

ck
s

C
oa

le
sc

e
to

 P
ag

es

P
ag

es

C
oa

le
sc

e
to

2M
B

 V
M

 B
lo

ck
s

P
ag

es
 &

V
M

 B
lo

ck
s

S
ys

te
m

 M
em

or
y

Rare
 ev

en
t

~6
 O

OM!!!

Focused test reduced MTBF to 12 minutes, 1-2 OOM better than stress test

68

Focused Test vs. Stress Test

Focused Test Stress test Existing testing
MTBF 12 minutes 5 to 27 hours Infinite?
Basis Exact bug Customer workload Past experience

Hardware Minimal A few large systems Many systems
Development Day or two Few person-weeks Large over years
Applicability Narrow * Modest Wide

Impact Profound contention Heavy load Wide variation

* No I/O, few tasks, modest stress on scheduler, almost no userspace

69

DYNIX/ptx Memory Allocator ca. 1993
P

er
-C

P
U

ca
ch

es

B
lo

ck
s

G
lo

ba
l

ca
ch

e

B
lo

ck
s

C
oa

le
sc

e
to

 P
ag

es

P
ag

es

C
oa

le
sc

e
to

2M
B

 V
M

 B
lo

ck
s

P
ag

es
 &

V
M

 B
lo

ck
s

S
ys

te
m

 M
em

or
y

Focused test reduced MTBF to 12 minutes, 1-2 OOM better than stress test

Are your fastpaths hiding bugs???

70

DYNIX/ptx Memory Allocator ca. 1993
P

er
-C

P
U

ca
ch

es

B
lo

ck
s

G
lo

ba
l

ca
ch

e

B
lo

ck
s

C
oa

le
sc

e
to

 P
ag

es

P
ag

es

C
oa

le
sc

e
to

2M
B

 V
M

 B
lo

ck
s

P
ag

es
 &

V
M

 B
lo

ck
s

S
ys

te
m

 M
em

or
y

Focused test reduced MTBF to 12 minutes, 1-2 OOM better than stress test

Are your fastpaths hiding bugs???Anti-Heisenbug:

De-emphasize fastpaths!!!

71

DYNIX/ptx Memory Allocator ca. 1993
P

er
-C

P
U

ca
ch

es

B
lo

ck
s

G
lo

ba
l

ca
ch

e

B
lo

ck
s

C
oa

le
sc

e
to

 P
ag

es

P
ag

es

C
oa

le
sc

e
to

2M
B

 V
M

 B
lo

ck
s

P
ag

es
 &

V
M

 B
lo

ck
s

S
ys

te
m

 M
em

or
y

Focused test reduced MTBF to 12 minutes, 1-2 OOM better than stress test

Are your fastpaths hiding bugs???Anti-Heisenbug:

De-emphasize fastpaths!!!

Performance and scalability???

72

Safely Disabling Fastpaths: Options
● Run on small systems

– Four-CPU guest OSes for the win!
● Accept massive contention
● Run code developed for old systems on newer

highly integrated systems

73

Hardware Latency Trends

Year Sockets CPUs CAS Latency (ns)
2008 4 16 95.9
2017 1 56 101.9

2017 4 224 442.9
2022 2 224 147.0

74

Hardware Latency Trends

Year Sockets CPUs CAS Latency (ns)
2008 4 16 95.9
2017 1 56 101.9

2017 4 224 442.9
2022 2 224 147.0

Newer systems handle memory

contention better

Fewer fastpaths? Larger systems? Decisions, decisions...

75

Overlapping RCU Readers

rcu_read_lock();
preempt_disable();
rcu_read_unlock();
local_irq_disable();
preempt_enable();
local_bh_disable();
local_irq_enable();
local_bh_enable();

76

Overlapping RCU Readers

rcu_read_lock();
preempt_disable();
rcu_read_unlock();
local_irq_disable();
preempt_enable();
local_bh_disable();
local_irq_enable();
local_bh_enable();Rare combination unless you are

running rcutorture

77

Other Rare Events

● Transitions to and from RCU idle
● CPU hotplug operations (boot and suspend)
● RCU callback flooding
● Memory near-exhaustion
● Transparent hugepage split/coalescing
● And many many more...

78

Other Rare Events

● Transitions to and from RCU idle
● CPU hotplug operations (boot and suspend)
● RCU callback flooding
● Memory near-exhaustion
● Transparent hugepage split/coalescing
● And many many more

Combine rare events:

multiplicative

decreases in MTBF

79

Other Rare Events

● Transitions to and from RCU idle
● CPU hotplug operations (boot and suspend)
● RCU callback flooding
● Memory near-exhaustion
● Transparent hugepage split/coalescing
● And many many more

Combine rare events:

multiplicative

decreases in MTBF
Anti-Heisenbug:

Combine rare events!!!

80

Other Rare Events

● Transitions to and from RCU idle
● CPU hotplug operations (boot and suspend)
● RCU callback flooding
● Memory near-exhaustion
● Transparent hugepage split/coalescing
● And many many more

Combine rare events:

multiplicative

decreases in MTBF
Anti-Heisenbug:

Combine rare events!!!

If you must choose, choose the
events causing the most trouble

81

Detect, Then Instrument

82

Detect, Then Instrument

● In theory, code executed after the heisenbug
occurs does not affect MTBF
– In practice, code-size changes can affect MTBF, but

this is relatively rare, at least until you count on it
● Two tales of timers…

83

Cartoon of RCU Grace Periods

Time

Initialize
Grace
Period

Force
Quiescent

States

Force
Quiescent

States

Repeat every few milliseconds
until all CPUs and/or tasks are accounted for

Force
Quiescent

States

Clean up
After

Grace
Period

84

Cartoon of RCU Grace Periods

Time

Initialize
Grace
Period

Force
Quiescent

States

Force
Quiescent

States

Repeat every few milliseconds
until all CPUs and/or tasks are accounted for

Force
Quiescent

States

Clean up
After

Grace
Period

Stuck

Here!

85

Cartoon of RCU Grace Periods

Time

Initialize
Grace
Period

Force
Quiescent

States

Force
Quiescent

States

Repeat every few milliseconds
until all CPUs and/or tasks are accounted for

Force
Quiescent

States

Clean up
After

Grace
Period

Stuck

Here!

100s of hours MTBF!!!

Adding debugging hides heisenbug!!!

86

Hunting Stuck-GP Heisenbug

● About a year to reduce MTBF to ~300 hours
– Choose .config to increase MTBF
– Increase rate of CPU-hotplug operations
– Debug still hides heisenbug
– RCU CPU stall warning restores forward progress

87

Hunting Stuck-GP Heisenbug

● About a year to reduce MTBF to ~300 hours
– Choose .config to increase MTBF
– Increase rate of CPU-hotplug operations
– Debug still hides heisenbug
– RCU CPU stall warning restores forward progress

Add debug after detection!!!

88

Adding Debug After Detection

● If timer took more than eight seconds and more
than three times as long as was requested,
dump debugging information
– Heuristic, but good enough in this case
– Bug was due to an interaction between timers, CPU

hotplug, and RCU

89

Adding Debug After Detection

● If timer took more than eight seconds and more
than three times as long as was requested,
dump debugging information
– Heuristic, but good enough in this case
– Bug was due to an interaction between timers, CPU

hotplug, and RCU
– Recent bug between workqueues and RCU?

90

Adding Debug After Detection

● If timer took more than eight seconds and more
than three times as long as was requested,
dump debugging information
– Heuristic, but good enough in this case
– Bug was due to an interaction between timers, CPU

hotplug, and RCU
– Recent bug between workqueues and RCU?Post-facto debug did not increase

MTBF!!!

91

Adding Debug After Detection

● If timer took more than eight seconds and more
than three times as long as was requested,
dump debugging information
– Heuristic, but good enough in this case
– Bug was due to an interaction between timers, CPU

hotplug, and RCU
– Recent bug between workqueues and RCU?Post-facto debug did not increase

MTBF!!!

Anti-heisenbug: Add debugging

after bug is detected!!!

92

Taking This One Step Further...

● When rare combination of events takes system
to a legal but vulnerable state, start the system
in that state
– The nuclear option: White-box testing
– Exhaustive state testing of rcu_segcblist

● Done in userspace

93

Taking This One Step Further...

● When rare combination of events takes system
to a legal but vulnerable state, start the system
in that state
– The nuclear option: White-box testing
– Exhaustive state testing of rcu_segcblist

● Done in userspaceAnti-heisenbug: Force rare

risky legal states!!!

94

Heisenbugs: The Goal

95

Heisenbugs: The Goal

● What is better than being proficient at hunting
heisenbugs?

96

Heisenbugs: The Goal

● What is better than being proficient at hunting
heisenbugs?

● Not having heisenbugs in the first place!!!

97

How to Avoid Hunting Heisenbugs

98

How to Avoid Hunting Heisenbugs

● No easy way out, but:
– Careful concurrency-first design
– Thorough unit testing, including stress testing
– Thorough integration testing
– Stringent code-review process
– Verification, if applicable

99

How to Avoid Hunting Heisenbugs

● No easy way out, but:
– Careful concurrency-first design
– Thorough unit testing, including stress testing
– Thorough integration testing
– Stringent code-review process
– Verification, if applicableAnti-heisenbug: Don’t randomly

hack concurrent code!!!

100

Summary

101

Summary: How to Hunt Heisenbugs
● Create anti-heisenbugs

– Reduce MTBF
– Increase workload intensity
– Look for and promote trouble
– Inject strategic delays
– Count near misses
– Swamp queues
– De-emphasize fastpaths
– Combine rare events
– Add debugging after bug is detected
– Force rare risky legal states (whitebox)

● Avoid (many) heisenbugs
– Careful concurrency-first design
– Thorough unit testing, including

stress testing
– Thorough integration testing
– Stringent code-review process
– Verification, if applicable
– Don’t randomly hack concurrent

code!!!

102

Summary: How to Hunt Heisenbugs
● Create anti-heisenbugs

– Reduce MTBF
– Increase workload intensity
– Look for and promote trouble
– Inject strategic delays
– Count near misses
– Swamp queues
– De-emphasize fastpaths
– Combine rare events
– Add debugging after bug is detected
– Force rare risky legal states (whitebox)

● Avoid (many) heisenbugs
– Careful concurrency-first design
– Thorough unit testing, including

stress testing
– Thorough integration testing
– Stringent code-review process
– Verification, if applicable
– Don’t randomly hack concurrent

code!!!
No “silver bullet”, but many

useful techniques

104

Questions?

105

Backup

106

Finite Requests into Finite Queue

107

Finite Requests into Finite Queue

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 104
	Slide 105
	Slide 106
	Slide 107

