
Rust for Linux

Miguel Ojeda
Wedson Almeida Filho

Agenda

● Status update
○ Community & team
○ Industry support
○ Kangrejos
○ Tools
○ Users

● Upstreaming
● Discussion topics

Status update

Growing Community

~460 subscribers in the rust-for-linux mailing list.

From ~340 last year.

Similar to the BPF and linux-rt-users lists.

— https://subspace.kernel.org/vger.kernel.org.html

https://subspace.kernel.org/vger.kernel.org.html

Growing Community

● The Zulip instance (i.e. chat) is growing too: ~530 users now!

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

● The Zulip instance (i.e. chat) is growing too: ~70 regulars

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

● 8000+ messages in the last year, which represent 70% of the total.

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Core Team
RUST
M: Miguel Ojeda < ojeda@kernel.org >
M: Alex Gaynor < alex.gaynor@gmail.com >
M: Wedson Almeida Filho < wedsonaf@gmail.com >
R: Boqun Feng < boqun.feng@gmail.com >
R: Gary Guo < gary@garyguo.net >
R: Björn Roy Baron < bjorn3_gh@protonmail.com >
R: Benno Lossin < benno.lossin@proton.me >
R: Andreas Hindborg < a.hindborg@samsung.com >
R: Alice Ryhl < aliceryhl@google.com >
L: rust-for-linux@vger.kernel.org
S: Supported
W: https://rust-for-linux.com
B: https://github.com/Rust-for-Linux/linux/issues
C: zulip://rust-for-linux.zulipchat.com
P: https://rust-for-linux.com/contributing
T: git https://github.com/Rust-for-Linux/linux.git rust-next
F: Documentation/rust/
F: rust/
F: samples/rust/
F: scripts/*rust*
K: \b(?i:rust)\b

mailto:ojeda@kernel.org
mailto:alex.gaynor@gmail.com
mailto:wedsonaf@gmail.com
mailto:boqun.feng@gmail.com
mailto:gary@garyguo.net
mailto:bjorn3_gh@protonmail.com
mailto:benno.lossin@proton.me
mailto:a.hindborg@samsung.com
mailto:aliceryhl@google.com
mailto:rust-for-linux@vger.kernel.org
https://rust-for-linux.com
https://github.com/Rust-for-Linux/linux/issues
https://rust-for-linux.com/contributing
https://github.com/Rust-for-Linux/linux.git

Growing Core Team

MAINTAINERS: add Benno Lossin as Rust reviewer

Benno has been involved with the Rust for Linux project for
the better part of a year now. He has been working on solving
the safe pinned initialization problem [1], which resulted in
the pin-init API patch series [2] that allows to reduce the
need for `unsafe` code in the kernel. He is also working on
the field projection RFC for Rust [3] to bring pin-init as a
language feature.

His expertise with the language will be very useful to have
around in the future if Rust grows within the kernel, thus
add him to the `RUST` entry as reviewer.

— Commit b0cf5d50210d (“MAINTAINERS: add Benno Lossin as Rust reviewer”)

Growing Core Team

MAINTAINERS: add Andreas Hindborg as Rust reviewer

Andreas has been involved with the Rust for Linux project for
more than a year now. He has been primarily working on the
Rust NVMe driver [1], presenting it in several places (such
as LPC [2][3] and Kangrejos [4]).

In addition, he recently submitted the Rust null block driver
[5] and has been reviewing patches in the mailing list for
some months.

Thus add him to the `RUST` entry as reviewer.

— Commit 2a6f5df3cd94 (“MAINTAINERS: add Andreas Hindborg as Rust reviewer”)

Growing Core Team

MAINTAINERS: add Alice Ryhl as Rust reviewer

Alice has been involved with the Rust for Linux project for
almost a year now. She has been primarily working on the
Android Binder Driver [1].

In addition, she has been reviewing patches in the mailing
list for some months and has submitted improvements to the
core Rust support.

She is also part of the core maintainer team for the widely
used library Tokio [2], an asynchronous Rust runtime.

Her expertise with the language will be very useful to have
around in the future if Rust grows within the kernel, thus
add her to the `RUST` entry as reviewer.

— Commit d4d84eaa3f39 (“MAINTAINERS: add Alice Ryhl as Rust reviewer”)

Aakash Sen Sharma <aakashsensharma@gmail.com>
Alexander Pantyukhin <apantykhin@gmail.com>
Alice Ryhl <aliceryhl@google.com>
Andrea Righi <andrea.righi@canonical.com>
Andreas Hindborg <nmi@metaspace.dk>
Ariel Miculas <amiculas@cisco.com>
Arnaldo Carvalho de Melo <acme@kernel.org>
Asahi Lina <lina@asahilina.net>
Bagas Sanjaya <bagasdotme@gmail.com>
Ben Gooding <ben.gooding.dev@gmail.com>
Benno Lossin <benno.lossin@proton.me>
Björn Roy Baron <bjorn3_gh@protonmail.com>
Boqun Feng <boqun.feng@gmail.com>
Carlos Bilbao <carlos.bilbao@amd.com>
Conor Dooley <conor.dooley@microchip.com>
Costa Shulyupin <costa.shul@redhat.com>
Daniel Almeida <daniel.almeida@collabora.com>
David Gow <davidgow@google.com>
David Rheinsberg <david@readahead.eu>
Ethan D. Twardy <ethan.twardy@gmail.com>
Finn Behrens <fin@nyantec.com>
FUJITA Tomonori <tomo@exabit.dev>
Gary Guo <gary@garyguo.net>
Guillaume Plourde <gplourde@protonmail.com>
Jamie Cunliffe <Jamie.Cunliffe@arm.com>
Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Maíra Canal <mcanal@igalia.com>

Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Masahiro Yamada <masahiroy@kernel.org>
Matteo Croce <teknoraver@meta.com>
Matthew Leach <dev@mattleach.net>
Matthew Maurer <mmaurer@google.com>
Michael Ellerman <mpe@ellerman.id.au>
Michele Dalle Rive <dallerivemichele@gmail.com>
Miguel Ojeda <ojeda@kernel.org>
Nick Desaulniers <nick.desaulniers@gmail.com>
Olof Johansson <olof@lixom.net>
Paran Lee <p4ranlee@gmail.com>
Patrick Blass <patrickblass@mailbox.org>
Qingsong Chen <changxian.cqs@antgroup.com>
Roy Matero <materoy@proton.me>
SeongJae Park <sj@kernel.org>
Thomas Bamelis <thomas@bamelis.dev>
Timo Grautstück <timo.gr@hotmail.de>
Trevor Gross <tmgross@umich.edu>
TruongSinh Tran-Nguyen <i@truongsinh.pro>
Vinay Varma <varmavinaym@gmail.com>
Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
WANG Rui <wangrui@loongson.cn>
Wedson Almeida Filho <wedsonaf@gmail.com>
Wei Liu <wei.liu@kernel.org>
Wu XiangCheng <bobwxc@email.cn>
Yang Yingliang <yangyingliang@huawei.com>
Yanteng Si <siyanteng@loongson.cn>

Patch series submitters

mailto:aakashsensharma@gmail.com
mailto:apantykhin@gmail.com
mailto:aliceryhl@google.com
mailto:andrea.righi@canonical.com
mailto:nmi@metaspace.dk
mailto:amiculas@cisco.com
mailto:acme@kernel.org
mailto:lina@asahilina.net
mailto:bagasdotme@gmail.com
mailto:ben.gooding.dev@gmail.com
mailto:benno.lossin@proton.me
mailto:bjorn3_gh@protonmail.com
mailto:boqun.feng@gmail.com
mailto:carlos.bilbao@amd.com
mailto:conor.dooley@microchip.com
mailto:costa.shul@redhat.com
mailto:daniel.almeida@collabora.com
mailto:davidgow@google.com
mailto:david@readahead.eu
mailto:ethan.twardy@gmail.com
mailto:fin@nyantec.com
mailto:tomo@exabit.dev
mailto:gary@garyguo.net
mailto:gplourde@protonmail.com
mailto:Jamie.Cunliffe@arm.com
mailto:jiapeng.chong@linux.alibaba.com
mailto:mcanal@igalia.com
mailto:yakoyoku@gmail.com
mailto:masahiroy@kernel.org
mailto:teknoraver@meta.com
mailto:dev@mattleach.net
mailto:mmaurer@google.com
mailto:mpe@ellerman.id.au
mailto:dallerivemichele@gmail.com
mailto:ojeda@kernel.org
mailto:nick.desaulniers@gmail.com
mailto:olof@lixom.net
mailto:p4ranlee@gmail.com
mailto:patrickblass@mailbox.org
mailto:changxian.cqs@antgroup.com
mailto:materoy@proton.me
mailto:sj@kernel.org
mailto:thomas@bamelis.dev
mailto:timo.gr@hotmail.de
mailto:tmgross@umich.edu
mailto:i@truongsinh.pro
mailto:varmavinaym@gmail.com
mailto:vincenzopalazzodev@gmail.com
mailto:wangrui@loongson.cn
mailto:wedsonaf@gmail.com
mailto:wei.liu@kernel.org
mailto:bobwxc@email.cn
mailto:yangyingliang@huawei.com
mailto:siyanteng@loongson.cn

Maintainers getting involved

KUnit maintainers got Rust files in their MAINTAINERS entry.

MAINTAINERS: add Rust KUnit files to the KUnit entry

The KUnit maintainers would like to maintain these files on
their side too (thanks!), so add them to their entry.

With this in place, `scripts/get_maintainer.pl` prints both
sets of maintainers/reviewers (i.e. KUnit and Rust) for those
files, which is the behavior we are looking for.

— Commit 64bd4641310c ("MAINTAINERS: add Rust KUnit files to the KUnit entry")

 KERNEL UNIT TESTING FRAMEWORK (KUnit)
 M: Brendan Higgins <brendanhiggins@google.com>
 M: David Gow <davidgow@google.com>
 ...
 F: lib/kunit/
+F: rust/kernel/kunit.rs
+F: scripts/rustdoc_test_*

mailto:brendanhiggins@google.com
mailto:davidgow@google.com

Matthew Wilcox is willing to keep the Rust and C sides in sync:

Maintainers getting involved

— https://lore.kernel.org/rust-for-linux/ZTaDFe%2Fs2wvyI9u2@casper.infradead.org/

I'm happy to commit to keeping the Rust implementation
updated as I modify the C implementation of folios, but
I appreciate that other maintainers may not be willing
to make such a commitment.

https://lore.kernel.org/rust-for-linux/ZTaDFe%2Fs2wvyI9u2@casper.infradead.org/

Sponsors & Industry support

— https://rust-for-linux.com/sponsors
— https://rust-for-linux.com/industry-and-academia-support

— https://www.memorysafety.org/initiative/linux-kernel/
— https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

https://rust-for-linux.com/sponsors
https://rust-for-linux.com/industry-and-academia-support
https://www.memorysafety.org/initiative/linux-kernel/
https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

Statements of support

“Being able to use Rust in the Linux kernel is an incredible milestone on

the road to a more secure future for the Internet and everything else

that depends heavily on Linux.”

— https://www.memorysafety.org/blog/rust-in-linux-just-the-beginning/
— https://rust-for-linux.com/industry-and-academia-support#ISRG

https://www.memorysafety.org/blog/rust-in-linux-just-the-beginning/
https://rust-for-linux.com/industry-and-academia-support#ISRG

Statements of support

“Samsung is actively engaged in supporting the integration of Rust code into the

Linux Kernel. Recognizing the significant benefits that Rust brings to kernel and

system software development, particularly in terms of enhancing security and

reducing critical bugs, Samsung is committed to enabling kernel developers to write

block layer device drivers using the Rust programming language. By embracing

modern programming languages like Rust, Samsung aims to attract new talent to

systems development and promote memory safety within the Linux storage stack.”

— https://rust-for-linux.com/industry-and-academia-support#Samsung

https://rust-for-linux.com/industry-and-academia-support#Samsung

Statements of support

“Cisco supports the inclusion and development of Rust in the Linux kernel as a

way of eliminating memory safety bugs and vulnerabilities. We are developing a

next-generation container filesystem in Rust and, to this end, we are contributing

time, code, and the testing effort to the Rust for Linux project.”

— https://rust-for-linux.com/industry-and-academia-support#Cisco

https://rust-for-linux.com/industry-and-academia-support#Cisco

Statements of support

“Collabora feels privileged to partner with customers who envision Rust as an

integral part of the Linux kernel's future. We are committed to supporting the

integration of Rust into as many Linux subsystems as appropriate over the coming

years. By doing so, this will enable our customers, and many more developers, to

increase the reliability of their Linux kernel contributions. We extend our gratitude

for the activities undertaken by the Rust for Linux Initiative.”

— https://rust-for-linux.com/industry-and-academia-support#Collabora

https://rust-for-linux.com/industry-and-academia-support#Collabora

Distributions

— https://ubuntu.com/blog/get-familiar-with-rusty-kernel-programming-in-ubuntu-lunar-lobster

https://ubuntu.com/blog/get-familiar-with-rusty-kernel-programming-in-ubuntu-lunar-lobster

Kangrejos

● The Rust for Linux Workshop

● An event where people involved in the
Rust for Linux discussions can meet in
a single place before LPC.

● https://kangrejos.com

● https://lwn.net/Archives/ConferenceIndex/
#Kangrejos

https://kangrejos.com
https://lwn.net/Archives/ConferenceIndex/#Kangrejos
https://lwn.net/Archives/ConferenceIndex/#Kangrejos

Kangrejos 2022, Oviedo, Spain

Kangrejos 2023, Gijón, Spain
— https://kangrejos.com

https://kangrejos.com

The new website

rust-for-linux.com

https://rust-for-linux.com

The new website

— https://rust-for-linux.com

Documentation and resources

https://rust-for-linux.com/branches

The new website

— https://rust-for-linux.com

Documentation and resources

Subprojects

https://rust-for-linux.com/branches

The new website

— https://rust-for-linux.com

Documentation and resources

Subprojects

Tools

https://rust-for-linux.com/branches

The new website

— https://rust-for-linux.com

Documentation and resources

Subprojects

Tools

Users

https://rust-for-linux.com/branches

The new website

— https://rust-for-linux.com

Documentation and resources

Subprojects

Tools

Users

External links

...

https://rust-for-linux.com/branches

Tools

rustc_codegen_gcc — Antoni Boucher

Compiles & QEMU-boots mainline without source changes.

https://github.com/rust-lang/rustc_codegen_gcc

GCC Rust (gccrs) — Arthur Cohen, Philip Herron

Upstreaming started in GCC 13.1, planned initial release for 14.1.

https://github.com/Rust-GCC/gccrs

Coccinelle for Rust — Julia Lawall, Tathagata Roy

Recently published.

https://gitlab.inria.fr/coccinelle/coccinelleforrust

https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/Rust-GCC/gccrs
https://gitlab.inria.fr/coccinelle/coccinelleforrust

Tools

rustc_codegen_gcc — Antoni Boucher

Compiles & QEMU-boots mainline without source changes.

https://github.com/rust-lang/rustc_codegen_gcc

GCC Rust (gccrs) — Arthur Cohen, Philip Herron

Upstreaming started in GCC 13.1, planned initial release for 14.1.

https://github.com/Rust-GCC/gccrs

Coccinelle for Rust — Julia Lawall, Tathagata Roy

Recently published.

https://gitlab.inria.fr/coccinelle/coccinelleforrust

https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/Rust-GCC/gccrs
https://gitlab.inria.fr/coccinelle/coccinelleforrust

Tools

rustc_codegen_gcc — Antoni Boucher

Compiles & QEMU-boots mainline without source changes.

https://github.com/rust-lang/rustc_codegen_gcc

GCC Rust (gccrs) — Arthur Cohen, Philip Herron

Upstreaming started in GCC 13.1, planned initial release for 14.1.

https://github.com/Rust-GCC/gccrs

Coccinelle for Rust — Julia Lawall, Tathagata Roy

Recently published.

https://gitlab.inria.fr/coccinelle/coccinelleforrust

https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/Rust-GCC/gccrs
https://gitlab.inria.fr/coccinelle/coccinelleforrust

Tools

rustc_codegen_gcc — Antoni Boucher

Compiles & QEMU-boots mainline without source changes.

https://github.com/rust-lang/rustc_codegen_gcc

GCC Rust (gccrs) — Arthur Cohen, Philip Herron

Upstreaming started in GCC 13.1, planned initial release for 14.1.

https://github.com/Rust-GCC/gccrs

Coccinelle for Rust — Julia Lawall, Tathagata Roy

Recently published.

https://gitlab.inria.fr/coccinelle/coccinelleforrust See Julia’s talk at the Rust MC
on Wednesday!

https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/Rust-GCC/gccrs
https://gitlab.inria.fr/coccinelle/coccinelleforrust

rustc_codegen_gcc

— Antoni Boucher

rustc_codegen_gcc

— Antoni Boucher

rustc_codegen_gcc

— Antoni Boucher

rustc_codegen_gcc

— Antoni Boucher

GCC Rust (gccrs)

— Arthur Cohen

GCC Rust (gccrs)

— Arthur Cohen

GCC Rust (gccrs)

— Arthur Cohen

Rust for Linux for Compiler Explorer

● Already prototyped and discussed with Matt Godbolt.
○ The basic setup is quite straightforward.
○ A reasonable set of versions and kernel configs should be OK resource-wise.
○

● Useful for development as well as training.
●
● Makes it trivial to check how code is actually generated in the kernel.

○ e.g. no need to remember what flags to pass.
○

● Ideally, also providing an Executor:
○ QEMU booting up a kernel.
○ Having a window to write an init script.
○ Useful for trainings etc.

More Compiler Explorer

● Ideally, we would like to get:
○ bindgen as a compiler (versioned)
○ rustfmt as a compiler (versioned)
○ Clippy as a compiler (versioned)
○ Augmenting compiler diagnostics with hyperlinks and custom actions.
○ Pre-filling flags (e.g. --edition for Rust) instead of the Overrides' implicit approach.

rust.docs.kernel.org

The original discussion on this started early 2021.

It has been a long time coming, but we got the OK to go ahead.

So expect the Rust generated docs to appear in that domain soon.

Per-tag access will be possible (e.g. v6.4, v6.6-rc1 and so on).

Some details are still open.

e.g. should we have a top bar for “tag” selection?

Mitigations

● -Zfunction-return support submitted to rustc.
○ https://github.com/rust-lang/rust/pull/116892

●
● Patch series submitted to the kernel.

○ RETPOLINE , SLS, RETHUNK.
○ https://lore.kernel.org/rust-for-linux/20231023174449.251550-1-ojeda@kernel.org/

●
● With both pieces, we are able to compile a kernel with objtool enabled for

Rust that does not generate the corresponding warnings.

https://github.com/rust-lang/rust/pull/116892
https://lore.kernel.org/rust-for-linux/20231023174449.251550-1-ojeda@kernel.org/

CFI and KCFI

● “Working on fixing the known issues [1], but these are corner cases and
hopefully shouldn't affect the Linux kernel/Rust-for-Linux.

Fixed building the standard library and its dependencies with CFI enabled.

● Working on fixing CFI violations in the standard library [2][3] -- so far there are
only 2 total, and by disabling CFI in these locations, all core and std tests
pass.

○ The third violation mentioned in the GitHub issue is actually a bug in the CFI implementation
I'm finishing a fix for.”

[1] https://github.com/rust-lang/rust/issues?q=is:open+label:PG-exploit-mitigations+CFI
[2] https://github.com/rust-lang/rust/issues/115199
[3] https://github.com/rust-lang/rust/pull/115200

— Ramon de C Valle

https://github.com/rust-lang/rust/issues?q=is:open+label:PG-exploit-mitigations+CFI
https://github.com/rust-lang/rust/issues/115199
https://github.com/rust-lang/rust/pull/115200

Reviewers’ Recommendations

“This is a list of topics about which developers may want rules of thumb or
checklists to start with. This also helps reviewers to understand the code quickly
and provide useful feedbacks. Note that among all the reviewers, there is one we
care most: the future yourself.

These recommendations may be incomplete, since both Rust and Linux are
moving targets. In case where this document doesn’t cover, please consider the
following:

● Be Rust idiomatic as hard as possible.
● Being explicit first and then improving ergonomic usually work.
● If you find a good and reasonable way for a certain problem, please do add it

in this document!”

— Boqun Feng

Deprecating the rust branch

The rust branch was the original branch where development happened for
two years.

We kept it synchronized with mainline (by merging Linus’ tree into it), but
otherwise it did not get new features.

Recently, the latest major user (that we are aware of), the NVMe driver, got
rebased on top of rust-next.

Thus the branch is now frozen/archived.

— https://rust-for-linux.com/branches

https://rust-for-linux.com/branches

Introducing the rust-dev branch

A branch intended for:

Early testing by taking patches without too much concern.

Can also be done during the merge window.

Easier development.

Knowing what is in the queue.

Typically rebased on top of rust-next often.

Patches (that are not RFCs) should not be based on it.

Managed by Boqun Feng.

— https://rust-for-linux.com/branches

https://rust-for-linux.com/branches

Upstreaming

Upstreamed code

6.1: Initial merge (minimal support, Rust 1.62.0).

6.2: Opaque, Either, CString, CStr, BStr, #[vtable], concat_idents! ,
{static,build}_assert! , the rest of pr_*! and more error codes, dbg!...

6.3: Arc, ArcBorrow, UniqueArc, ForeignOwnable , ScopeGuard.

6.4: pinned-init API, AlwaysRefCounted , ARef, Lock, Guard, Mutex, SpinLock, CondVar, Task, uapi
crate...

6.5: Rust 1.68.2 (first upgrade), pinned-init improvements, Error’s name() support, AsRef for Arc...

6.6: Rust documentation tests as KUnit tests, pinned-init features, paste!, Rust 1.71.1, bindgen 0.65.1,
rust_is_available series...

6.7: Workqueue abstractions, Rust 1.73.0, toybox support (Android), x86 IBT, webpage and Maintainer Entry
Profile document.

RFCs/WIP: Binder, NVMe, DRM (Apple GPU, VGEM), file systems (tarfs, PuzzleFS), PHY, V4L2 codecs...

Better ergonomics for pinned initialisation

● The Linux kernel has many data structures that require stable addresses
○ For example, struct list_head, described previously here

● We had no ergonomic way of initialising them in Rust
○ In Rust, safe initialisation happens before we know the destination address
○ We needed unsafe blocks for this originally

● We introduced pin-init
○ Allows us to initialised pinned objects without unsafe blocks – see Benno's talk at the Rust MC

on Wednesday!

https://youtu.be/fVEeqo40IyQ?t=1763
https://lore.kernel.org/rust-for-linux/Bk4Yd1TBtgoLg2g_c37V3c_Wt30FMS89z7LrjnfadhDquwG_0dUGz1c_9BlMDmymg0tCACBpmCw-wZxlg4Jl4W2gkorh5P78ePgSnJVR5cU=@protonmail.com/

Unexpected safety issue

● Deadlocks are safe in Rust
○ A deadlock doesn’t result in undefined behaviour

● This isn't true in the Linux kernel
○ In certain configurations, a situation that should have lead to a deadlock, leads to

user-after-free

● We need to avoid sleeping in atomic context for safety
○ Previously, we believed we only needed it for correctness

● We introduced klint
○ Static analysis to detect context violations – see Gary's talk at the Rust MC on Wednesday!

https://doc.rust-lang.org/reference/behavior-not-considered-unsafe.html
https://lore.kernel.org/lkml/YyivY6WIl%2FahZQqy@wedsonaf-dev/
https://lore.kernel.org/lkml/YyivY6WIl%2FahZQqy@wedsonaf-dev/
https://www.memorysafety.org/blog/gary-guo-klint-rust-tools/

Block layer abstractions

● The community suggested that we implement an NVMe driver in Rust
○ Andreas presented performance numbers for that in LPC last year

● We wrote block layer abstractions as part of that effort
○ The NVMe and Null blk drivers use these abstractions

● We are improving and working on upstreaming the abstractions
○ So that block layer drivers can be written in Rust – see Andreas' talk at the Rust MC on

Wednesday!

https://lore.kernel.org/lkml/20210414194946.GW2531743@casper.infradead.org/
https://youtu.be/Xw9pKeJ-4Bw?t=8070

Android Binder

● We had Binder as a WIP patch in the original Rust RFC in 2021
○ It is Android's driver for IPC

● It was the first non-trivial Rust driver
○ But the community considered it too atypical and wanted to see other drivers
○ So we temporarily shifted our focus away

● It is now feature complete
○ It's intended to replace the C implementation – see Alice's talk at the Rust MC on Wednesday!

https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/T/#m42dcc66a0678283669e32dbe26e0fbb4e7cb222c
https://lore.kernel.org/rust-for-linux/20231102133358.324909-1-aliceryhl@google.com/T/#m90ed95f43587269c2d41a5f68015a7aaf46cef92

Virtual file system

● Needed by two Rust file systems: tarfs and puzzlefs
○ Per recommendation, only providing abstractions for needed features
○

● An RFC patch series was posted
○ Some feedback provided, working on v2

● Some unsoundness still present
○ When unregistering file systems

https://lore.kernel.org/rust-for-linux/20231018122518.128049-20-wedsonaf@gmail.com/
https://www.youtube.com/watch?v=OhMtoLrjiBY
https://lore.kernel.org/rust-for-linux/2023071049-gigabyte-timing-0673@gregkh/
https://lore.kernel.org/rust-for-linux/20231018122518.128049-1-wedsonaf@gmail.com/
https://lore.kernel.org/rust-for-linux/CANeycqpwV+uzSp2skuO8TQP5Py-J2qe_=X3j_XL74QwevRXr9w@mail.gmail.com/

Discussion topics

Soundness issues for stable

● A soundness issue in Rust is a mistake that could cause otherwise safe Rust
code to introduce UB.

○ They may not materialize in current kernel/compiler versions.
○ However, we could have concrete instances where they are a real issue, especially

considering distributions and out-of-tree modules.
●
● We want to evaluate how feasible it would be to backport these long-term.

○ So far, we have backported several.
○ Probably worth a mention in the stable kernel rules.

Rust version policy

● We cannot guarantee newer Rust versions will work due to the unstable
features in use.

○ The Rust language is stable, i.e. it promises backwards compatibility.
●
● In other words, our “minimum version” is in the future.
●
● Thus, for now, we are tracking the latest version of the Rust compiler.

○ Quite unusual for the kernel.
●
● Stable backports have not been an issue so far.

○ Should get easier as features get stabilized and we can establish the minimum version.

— https://rust-for-linux.com/rust-version-policy

https://rust-for-linux.com/rust-version-policy

Duplicate drivers exception

● A few maintainers are open to the idea of experimenting with Rust, but they may
want to start simple with a driver they are familiar with.

●
● However, such a driver would violate the "no duplicate drivers" rule.
●
● Others have expressed an interest in writing Rust drivers, but the required

abstractions are not there, and merging those would break the "no code without an
expected in-tree user" rule.

●
● Some maintainers may want to avoid a flag day, or may prefer to iterate in-tree.
●
● For these and other reasons, we have requested an exception for Rust drivers.

— [MAINTAINERS SUMMIT] The Rust Experiment

https://lore.kernel.org/ksummit/CANiq72=99VFE=Ve5MNM9ZuSe9M-JSH1evk6pABNSEnNjK7aXYA@mail.gmail.com/

Rust for Linux

Miguel Ojeda
Wedson Almeida Filho

Backup slides

drivers/

my_foo
driver

include/

bindgen

bindings
crate

kernel
crate

foo
subsystem

bar
subsystem

foo/

Forbidden!

Safe

Safe Abstractions

Unsafe

Linux tree

...

rust/library/

builtins
crate

macros
crate

alloc
crate

kernel
crate

alloc
crate

core
crate

exports helpers

include/

bindgen

bindings
crate

Rust tree Linux tree

