Rust for Linux

Miguel Ojeda
Wedson Almeida Filho

Agenda

Status update
Community & team
Industry support
Kangrejos
Tools
Users

Upstreaming
Discussion topics

Status update

Growing Community

~460 subscribers in the rust-for-1inux mailing list.

From ~340 last year.

Similar to the BPF and 1inux-rt-users lists.

500
400
300
200

100

0
2021-01-01 2021-07-01 2022-01-01 2022-07-01 2023-01-01 2023-07-01

— https://subspace.kernel.org/vger.kernel.org.html

https://subspace.kernel.org/vger.kernel.org.html

Growing Community

The Zulip instance (i.e. chat) is growing too: ~530 users now!

Active users

Daily actives 15 day actives Total users

500
400
300
200

100

. Jul 2021 Oct 2021 Jan 2022 Apr2022 Jul 2022 Oct 2022 Jan 2023 Apr2023 Jul 2023

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

The Zulip instance (i.e. chat) is growing too: ~70 regulars

Active users

Daily actives 15 day actives Total users

80
60
40

20

Jul 2021 Oct 2021 Jan 2022 Apr 2022 Jul 2022 Oct 2022 Jan 2023 Apr2023 Jul 2023

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Community

8000+ messages in the last year, which represent 70% of the total.

Messages sent by recipient type

¢

Lastweek Lastmonth Lastyear Alltime Total messages: 8,224

Me Everyone

Direct messages (37%)

Public streams (39%)

Private streams (21%)

Group direct messages (2.4%)

— https://rust-for-linux.zulipchat.com/stats

https://rust-for-linux.zulipchat.com/stats

Growing Core Team

)
- g
)
=

NS neEWYow YRR

Miguel Ojeda < ojeda@kernel.org>

Alex Gaynor <alex.gavnor@gmail.com >

Wedson Almeida Filho < wedsonaf@gmail.com >
Boqun Feng <bogun.feng@gmail.com >

Gary Guo <garyv@garvguo.net >

Bjorn Roy Baron < bjorn3 gh@protonmail.com >
Benno Lossin < benno.lossin@proton.me >
Andreas Hindborg < a.hindborg@samsung.com >
Alice Ryhl <alicervhl@google.com >
rust-for-linux@vger.kernel.org

Supported

https://rust-for-linux.com
https://github.com/Rust-for-Tinux/linux/issues
zulip://rust-for-linux.zulipchat.com
https://rust-for-linux.com/contributing

git https://github.com/Rust-for-TLinux/linux.git rust-next

Documentation/rust/
rust/

samples/rust/
scripts/*rust*

\b (?i:rust) \b

mailto:ojeda@kernel.org
mailto:alex.gaynor@gmail.com
mailto:wedsonaf@gmail.com
mailto:boqun.feng@gmail.com
mailto:gary@garyguo.net
mailto:bjorn3_gh@protonmail.com
mailto:benno.lossin@proton.me
mailto:a.hindborg@samsung.com
mailto:aliceryhl@google.com
mailto:rust-for-linux@vger.kernel.org
https://rust-for-linux.com
https://github.com/Rust-for-Linux/linux/issues
https://rust-for-linux.com/contributing
https://github.com/Rust-for-Linux/linux.git

Growing Core Team

MAINTAINERS: add Benno Lossin as Rust reviewer

Benno has been involved with the Rust for Linux project for
the better part of a year now. He has been working on solving
the safe pinned initialization problem [1], which resulted in
the pin-init API patch series [2] that allows to reduce the
need for “unsafe code in the kernel. He is also working on
the field projection RFC for Rust [3] to bring pin-init as a
language feature.

His expertise with the language will be very useful to have
around in the future if Rust grows within the kernel, thus
add him to the "RUST entry as reviewer.

— Commit b@cf5d56210d (“MAINTAINERS: add Benno Lossin as Rust reviewer”)

Growing Core Team

MAINTAINERS: add Andreas Hindborg as Rust reviewer

Andreas has been involved with the Rust for Linux project for
more than a year now. He has been primarily working on the
Rust NVMe driver [1], presenting it in several places (such
as LPC [2][3] and Kangrejos [4]).

In addition, he recently submitted the Rust null block driver
[5] and has been reviewing patches in the mailing list for
some months.

Thus add him to the "RUST entry as reviewer.

— Commit 2a6f5df3cd94 (“MAINTAINERS: add Andreas Hindborg as Rust reviewer”)

Growing Core Team

MAINTAINERS: add Alice Ryhl as Rust reviewer

Alice has been involved with the Rust for Linux project for
almost a year now. She has been primarily working on the
Android Binder Driver [1].

In addition, she has been reviewing patches in the mailing
list for some months and has submitted improvements to the
core Rust support.

She is also part of the core maintainer team for the widely
used library Tokio [2], an asynchronous Rust runtime.

Her expertise with the language will be very useful to have
around in the future if Rust grows within the kernel, thus
add her to the "RUST entry as reviewer.

— Commit d4d84eaa3f39 (“MAINTAINERS: add Alice Ryhl as Rust reviewer”)

Patch series submitters

Aakash Sen Sharma <aakashsensharma@gmail.com> Martin Rodriguez Reboredo <yakovoku@gmail.com>
Alexander Pantyukhin <apantykhin@gmail.com> Masahiro Yamada <masahiroy@kernel.org>

Alice Ryhl <aliceryhl@google.com> Matteo Croce <teknoraver@meta.com>

Andrea Righi <andrea.righi@canonical.com> Matthew Leach <dev@mattleach.net>

Andreas Hindborg <nmi@metaspace.dk> Matthew Maurer <mmaurer@google.com>

Ariel Miculas <amiculas@cisco.com> Michael Ellerman <mpe@ellerman.id.au>

Arnaldo Carvalho de Melo <acme@kernel.org> Michele Dalle Rive <dallerivemichele@gmail.com>
Asahi Lina <lina@asahilina.net> Miguel Ojeda <ojeda@kernel.org>

Bagas Sanjaya <bagasdotme@gmail.com> Nick Desaulniers <pick.desaulniers@gmail.com>
Ben Gooding <ben.gooding.dev@gmail.com> Olof Johansson <olof@lixom.net>

Benno Lossin <benno.lossin@proton.me> Paran Lee <p4ranlee@gmail.com>

Bjoérn Roy Baron <bjorn3 gh@protonmail.com> Patrick Blass <patrickblass@mailbox.org>

Bogqun Feng <bogun.feng@gmail.com> Qingsong Chen <changxian.cgs@antgroup.com>
Carlos Bilbao <carlos.bilbao@amd.com> Roy Matero <materoy@proton.me>

Conor Dooley <conor.dooley@microchip.com> SeongJae Park <sijl@kernel.org>

Costa Shulyupin <costa.shul@redhat.com> Thomas Bamelis <thomas@bamelis.dev>

Daniel Almeida <daniel.almeida@collabora.com> Timo Grautstiick <timo.gr@hotmail.de>

David Gow <davidgow@google.com> Trevor Gross <tmgross@umich.edu>

David Rheinsberg <david@readahead.eu> TruongSinh Tran-Nguyen <i@truongsinh.pro>
Ethan D. Twardy <ethan.twardy@gmail.com> Vinay Varma <varmavinaym@gmail.com>

Finn Behrens <fin@nyantec.com> Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
FUJITA Tomonori <tomo@exabit.dev> WANG Rui <wangrui@loongson.cn>

Gary Guo <gary@garyguo.net> Wedson Almeida Filho <wedsonaf@gmail.com>
Guillaume Plourde <gplourde@protonmail.com> Wei Liu <wei.liu@kernel.org>

Jamie Cunliffe <Jamie.Cunliffe@arm.com> Wu XiangCheng <pobwxc@email.cn>

Jiapeng Chong <Zjiapeng.chong@linux.alibaba.com> Yang Yingliang <yangyingliang@huawei.com>

Maira Canal <mcanal@igalia.com> Yanteng Si <giyanteng@loongson.cn>

mailto:aakashsensharma@gmail.com
mailto:apantykhin@gmail.com
mailto:aliceryhl@google.com
mailto:andrea.righi@canonical.com
mailto:nmi@metaspace.dk
mailto:amiculas@cisco.com
mailto:acme@kernel.org
mailto:lina@asahilina.net
mailto:bagasdotme@gmail.com
mailto:ben.gooding.dev@gmail.com
mailto:benno.lossin@proton.me
mailto:bjorn3_gh@protonmail.com
mailto:boqun.feng@gmail.com
mailto:carlos.bilbao@amd.com
mailto:conor.dooley@microchip.com
mailto:costa.shul@redhat.com
mailto:daniel.almeida@collabora.com
mailto:davidgow@google.com
mailto:david@readahead.eu
mailto:ethan.twardy@gmail.com
mailto:fin@nyantec.com
mailto:tomo@exabit.dev
mailto:gary@garyguo.net
mailto:gplourde@protonmail.com
mailto:Jamie.Cunliffe@arm.com
mailto:jiapeng.chong@linux.alibaba.com
mailto:mcanal@igalia.com
mailto:yakoyoku@gmail.com
mailto:masahiroy@kernel.org
mailto:teknoraver@meta.com
mailto:dev@mattleach.net
mailto:mmaurer@google.com
mailto:mpe@ellerman.id.au
mailto:dallerivemichele@gmail.com
mailto:ojeda@kernel.org
mailto:nick.desaulniers@gmail.com
mailto:olof@lixom.net
mailto:p4ranlee@gmail.com
mailto:patrickblass@mailbox.org
mailto:changxian.cqs@antgroup.com
mailto:materoy@proton.me
mailto:sj@kernel.org
mailto:thomas@bamelis.dev
mailto:timo.gr@hotmail.de
mailto:tmgross@umich.edu
mailto:i@truongsinh.pro
mailto:varmavinaym@gmail.com
mailto:vincenzopalazzodev@gmail.com
mailto:wangrui@loongson.cn
mailto:wedsonaf@gmail.com
mailto:wei.liu@kernel.org
mailto:bobwxc@email.cn
mailto:yangyingliang@huawei.com
mailto:siyanteng@loongson.cn

Maintainers getting involved

KUnit maintainers got Rust files in their MAINTATINERS entry.

MAINTAINERS: add Rust KUnit files to the KUnit entry

The KUnit maintainers would like to maintain these files on
their side too (thanks!), so add them to their entry.

With this in place, ‘“scripts/get maintainer.pl’ prints both
sets of maintainers/reviewers (i.e. KUnit and Rust) for those
files, which is the behavior we are looking for.

KERNEL UNIT TESTING FRAMEWORK (KUnit)
M: Brendan Higgins <prendanhiggins@google.com>
M: David Gow <davidgow@google.com>

F: 1lib/kunit/
+F: rust/kernel/kunit.rs
+F: scripts/rustdoc test *

— Commit 64bd4641310c ("MAINTAINERS: add Rust KUnit files to the KUnit entry")

mailto:brendanhiggins@google.com
mailto:davidgow@google.com

Maintainers getting involved

Matthew Wilcox is willing to keep the Rust and C sides in sync:

I'm happy to commit to keeping the Rust implementation
updated as I modify the C implementation of folios, but
I appreciate that other maintainers may not be willing
to make such a commitment.

— https://lore.kernel.org/rust-for-linux/ZTaDFe%2F s2wvylQu2@casper.infradead.ora/

https://lore.kernel.org/rust-for-linux/ZTaDFe%2Fs2wvyI9u2@casper.infradead.org/

Sponsors & Industry support

||§R@ OpenSSF

Go g|e Zhruturewe B® Microsoft AFIM

Technologies

el SAMSUNG @ Redarat GO

— https://rust-for-linux.com/sponsors
e — https://rust-for-linux.com/industry-and-academia-support

— https://www.memorysafety.org/initiative/linux-kernel/
— https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

https://rust-for-linux.com/sponsors
https://rust-for-linux.com/industry-and-academia-support
https://www.memorysafety.org/initiative/linux-kernel/
https://www.memorysafety.org/blog/rustls-and-rust-for-linux-funding-openssf/

Statements of support

“‘Being able to use Rust in the Linux kernel is an incredible milestone on
the road to a more secure future for the Internet and everything else

that depends heavily on Linux.”

ISRG

— https://www.memorysafety.org/blog/rust-in-linux-just-the-beginning/

— https://rust-for-linux.com/industry-and-academia-support#ISRG

https://www.memorysafety.org/blog/rust-in-linux-just-the-beginning/
https://rust-for-linux.com/industry-and-academia-support#ISRG

Statements of support

“Samsung is actively engaged in supporting the integration of Rust code into the
Linux Kernel. Recognizing the significant benefits that Rust brings to kernel and
system software development, particularly in terms of enhancing security and
reducing critical bugs, Samsung is committed to enabling kernel developers to write
block layer device drivers using the Rust programming language. By embracing
modern programming languages like Rust, Samsung aims to attract new talent to

systems development and promote memory safety within the Linux storage stack.”

SAMSUNG

— https://rust-for-linux.com/industry-and-academia-support#Samsung

https://rust-for-linux.com/industry-and-academia-support#Samsung

Statements of support

“Cisco supports the inclusion and development of Rust in the Linux kernel as a
way of eliminating memory safety bugs and vulnerabilities. We are developing a
next-generation container filesystem in Rust and, to this end, we are contributing

time, code, and the testing effort to the Rust for Linux project.”

i
CISCO

— https://rust-for-linux.com/industry-and-academia-support#Cisco

https://rust-for-linux.com/industry-and-academia-support#Cisco

Statements of support

“Collabora feels privileged to partner with customers who envision Rust as an
integral part of the Linux kernel's future. We are committed to supporting the
integration of Rust into as many Linux subsystems as appropriate over the coming
years. By doing so, this will enable our customers, and many more developers, to
increase the reliability of their Linux kernel contributions. We extend our gratitude

for the activities undertaken by the Rust for Linux Initiative.”

COLLABORA
GO

— https://rust-for-linux.com/industry-and-academia-support#Collabora

https://rust-for-linux.com/industry-and-academia-support#Collabora

Distributions

Rust support in the Ubuntu kernel

Using Rust, you can easily create your own kernel modules and share them
with other Ubuntu users, without the need of any special toolchain or kernel
requirements.

The generic kernel in Ubuntu already contains the Rust subsystem that is
capable of running Rust modules.

From a user-space perspective developers just need to install the toolchain
packages required to build kernel modules in Rust:

$ sudo apt install rustc-1.62 rust-1.62-src rustfmt-1.62 \
bindgen-0.56 llvm clang gcc make \
\

linux-lib-rust-$ (uname -r) linux-headers-$(uname -r)

Distributing Rust kernel modules is also easy with Ubuntu, any Ubuntu user can
recompile and load binary modules (.ko) directly into the generic kernel
shipped with the distribution, like any other regular kernel module.

Ubuntu
8 Canonical

— https://ubuntu.com/blog/get-familiar-with-rusty-kernel-programming-in-ubuntu-lunar-lobster

https://ubuntu.com/blog/get-familiar-with-rusty-kernel-programming-in-ubuntu-lunar-lobster

Kangrejos

The Rust for Linux Workshop

An event where people involved in the
Rust for Linux discussions can meet in
a single place before LPC.

https://kangrejos.com

https://lwn.net/Archives/Conferencelndex/
#Kangrejos

https://kangrejos.com
https://lwn.net/Archives/ConferenceIndex/#Kangrejos
https://lwn.net/Archives/ConferenceIndex/#Kangrejos

Spain

Oviedo

Q\]
AN
o
AN
(7p]
O
(<))
| -
(@)
(e
(4]
X

el |

Gijon
rejos.com

https://kan

o
N
o
«
0
2,
o)
—
)
C
©
X

https://kangrejos.com

The new website

The project

Contact

Contributing

Branches

Rust version policy

Unstable features

Backporting and stable/LTS releases
Third-party crates

Out-of-tree modules

Industry and academia support
Sponsors

rust-for-linux.com

klint

pinned-init

Tools
Coccinelle for Rust

rustc_codegen_gcc

Users
NVMe Driver
Null Block Driver
Android Binder Driver
PuzzleFs filesystem driver

Links

Contact
Lore (mailing list archive)
Zulip (chat)

https://rust-for-linux.com

The new website

The project

Contact
Contributing .
Branches Documentation and resources
Rust version policy

Unstable features

Backporting and stable/LTS releases
Third-party crates

Out-of-tree modules

Industry and academia support

Sponsors

Subprojects
klint

pinned-init

Tools
Coccinelle for Rust

rustc_codegen_gcc

Users
NVMe Driver
Null Block Driver
Android Binder Driver
PuzzleFs filesystem driver

Links

— https://rust-for-linux.com

Contact

Lore (mailing list archive)
Zulip (chat)

https://rust-for-linux.com/branches

The new website

The project

Contact

Contributing .

Branches Documentation and resources
Rust version policy

Unstable features

Backporting and stable/LTS releases 1

Third-party crates S u b p rOJ eCtS

Out-of-tree modules

Industry and academia support

Sponsors

Subprojects
klint

pinned-init

Tools
Coccinelle for Rust

rustc_codegen_gcc

Users
NVMe Driver
Null Block Driver
Android Binder Driver
PuzzleFs filesystem driver

Links

— https://rust-for-linux.com

Contact

Lore (mailing list archive)
Zulip (chat)

https://rust-for-linux.com/branches

The new website

The project

Contact

Contributing .

Branches Documentation and resources
Rust version policy

Unstable features

Backporting and stable/LTS releases 1

Third-party crates S u b p rOJ eCtS

Out-of-tree modules

Industry and academia support

Sponsors TOO I S

Subprojects
klint

pinned-init

Tools
Coccinelle for Rust

rustc_codegen_gcc

Users
NVMe Driver
Null Block Driver
Android Binder Driver
PuzzleFs filesystem driver

Links

— https://rust-for-linux.com

Contact

Lore (mailing list archive)
Zulip (chat)

https://rust-for-linux.com/branches

The project

Contact

Contributing

Branches

Rust version policy

Unstable features

Backporting and stable/LTS releases
Third-party crates

Out-of-tree modules

Industry and academia support
Sponsors

Subprojects
klint

pinned-init

Tools
Coccinelle for Rust

rustc_codegen_gcc

Users
NVMe Driver
Null Block Driver
Android Binder Driver
PuzzleFs filesystem driver

Links

Contact
Lore (mailing list archive)
Zulip (chat)

The new website

Documentation and resources
Subprojects
Tools

Users

— https://rust-for-linux.com

https://rust-for-linux.com/branches

Android Binder Driver
PuzzleFs filesystem driver

Links

Contact

Lore (mailing list archive)
Zulip (chat)
GitHub Organization

Security

Report a security bug

Issue tracking

Issues
Unstable features
Good first issues

Branches

rust-next
rust-fixes

rust

Documentation

Kernel documentation (mainline)
Kernel documentation (next)

rustdoc code docs (v6.6-rc2)
rustdoc code docs (rust 2023-03-13)
Out-of-tree module template

Conferences

Kangrejos

Linux Plumbers Conference (LPC)
Rust MC at LPC 2023

Rust MC at LPC 2022

LWN

Rust index

The new website

Documentation and resources

Subprojects
Tools

Users

External links

— https://rust-for-linux.com

https://rust-for-linux.com/branches

The project

Contact

Contributing

Branches

Rust version policy

Unstable features

Backporting and stable/LTS releases
Third-party crates

Out-of-tree modules

Industry and academia support
Sponsors

Subprojects

klint

pinned-init

Tools

Coccinelle for Rust

rustc_codegen_gcc

Users

NVMe Driver

Null Block Driver

Android Binder Driver
PuzzleFs filesystem driver

Links

Contact

Lore (mailing list archive)
Zulip (chat)

Rust for Linux

Coccinelle for Rust

Coccinelle is a tool for automatic program matching and transformation that was originally
developed for making large scale changes to the Linux kernel source code (ie, C code). Matches and
transformations are driven by user-specific transformation rules having the form of abstracted
patches, referred to as semantic patches. As the Linux kernel, and systems software more generally,
is starting to adopt Rust, we are developing Coccinelle for Rust, to make the power of Coccinelle
available to Rust codebases.

Examples

Changing a method call sequence in the Rust implementation:

ee

expression tcx, arg;

ee

- tcx.type_of(arg)

+ tcx.bound_type_of(arg).subst_identity()

Merging some lifetimes in tokio:

ce

identifier f, P, p;

type T1, T2;

ce

- f<P: T1>(p: P) —> T2

£ E(ps dwpt F1) => T2
f 00 }

Current status

Out-of-tree modules
Industry and academia support
Sponsors

Subprojects
klint

pinned-init

Tools
Coccinelle for Rust

rustc_codegen_gcc

Users
NVMe Driver
Null Block Driver
Android Binder Driver
PuzzleFs filesystem driver

Links

Contact
Lore (mailing list archive)
Zulip (chat)
GitHub Organization

Security
Report a security bug

Issue tracking
Issues
Unstable features
Good first issues

Branches
rust-next
rust-fixes

rust

Rust for Linux

T4UT IS LS WU TUIVE) 107 1 2UVyY

32 GB DRAM
1x INTEL MEMPEKT1WO16GA (PCle 3.0 x2)
Debian Bullseye userspace

Results

10/s

1le6

i)
iy L

Read Throughput (Bare Metal, 512B)

C
Rust

0.8

0.6

0.4

o~ <t o«

Queue Depth

Read Throughput (Bare Metal)

1.0 1

C512 !
Rust 512

C 4k
Rust 4k z

(¢]

Tools

rustc_codegen gcc — Antoni Boucher
Compiles & QEMU-boots mainline without source changes.

https://github.com/rust-lang/rustc _codegen gcc

https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/Rust-GCC/gccrs
https://gitlab.inria.fr/coccinelle/coccinelleforrust

Tools

rustc_codegen gcc — Antoni Boucher
Compiles & QEMU-boots mainline without source changes.

https://qithub.com/rust-lang/rustc_codegen_gcc

GCC Rust (gccrs) — Arthur Cohen, Philip Herron
Upstreaming started in GCC 13.1, planned initial release for 14.1.
https://qithub.com/Rust-GCC/gccrs

https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/Rust-GCC/gccrs
https://gitlab.inria.fr/coccinelle/coccinelleforrust

Tools

rustc_codegen gcc — Antoni Boucher
Compiles & QEMU-boots mainline without source changes.

https://qithub.com/rust-lang/rustc_codegen_gcc

GCC Rust (gccrs) — Arthur Cohen, Philip Herron
Upstreaming started in GCC 13.1, planned initial release for 14.1.
https://qithub.com/Rust-GCC/gccrs

Coccinelle for Rust — Julia Lawall, Tathagata Roy
Recently published.

https://qgitlab.inria.fr/coccinelle/coccinelleforrust

https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/Rust-GCC/gccrs
https://gitlab.inria.fr/coccinelle/coccinelleforrust

Tools

rustc_codegen gcc — Antoni Boucher
Compiles & QEMU-boots mainline without source changes.

https://qithub.com/rust-lang/rustc_codegen_gcc

GCC Rust (gccrs) — Arthur Cohen, Philip Herron
Upstreaming started in GCC 13.1, planned initial release for 14.1.
https://qithub.com/Rust-GCC/gccrs

Coccinelle for Rust — Julia Lawall, Tathagata Roy

Recently published.
https://qgitlab.inria.fr/coccinelle/coccinelleforrust See Julia’s talk at the Rust MC
on Wednesday!

https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/Rust-GCC/gccrs
https://gitlab.inria.fr/coccinelle/coccinelleforrust

rustc codegen gcc

/tmp $ clone https://github.com/Rust-for-Linux/linux/ --single-branch --branch=rust-next
Cloning into 'linux'...
remote: Enumerating objects: 9716732, done.
remote: Counting objects: 100% (629/629), done.
remote: Compressing objects: 100% (629/629), done.
remote: Total 9716732 (delta 0), reused 629 (delta 0), pack-reused 9716103
Receiving objects: 100% (9716732/9716732), 4.49 GiB | 3.86 MiB/s, done.
Resolving deltas: 100% (7944120/7944120), done.
Updating files: 100% (81757/81757), done.
/tmp $ linux
CREDITS Kconfig MAINTAINERS
COPYING Kbuild Makefile
/t/linux (Iv) $ defconfig
HOSTCC scripts/basic/fixdep
HOSTCC scripts/kconfig/conf.o
HOSTCC scripts/kconfig/confdata.o
HOSTCC scripts/kconfig/expr.o
LEX scripts/kconfig/lexer.lex.c
YACC scripts/kconfig/parser.tab.[ch]
HOSTCC scripts/kconfig/lexer.lex.o
HOSTCC scripts/kconfig/menu.o
HOSTCC scripts/kconfig/parser.tab.o
HOSTCC scripts/kconfig/preprocess.o
HOSTCC scripts/kconfig/symbol.o
HOSTCC scripts/kconfig/util.o
HOSTLD scripts/kconfig/conf
*** Default configuration is based on 'x86_64 defconfig’

#

configuration written to .config

#

/t/linux (Iv) $ menuconfig

HOSTCC scripts/kconfig/mconf.o

HOSTCC scripts/kconfig/1xdialog/checklist.o
HOSTCC scripts/kconfig/1xdialog/inputbox.o
HOSTCC scripts/kconfig/1xdialog/menubox.o
HOSTCC scripts/kconfig/1xdialog/textbox.o
HOSTCC scripts/kconfig/1xdialog/util.o
HOSTCC scripts/kconfig/1xdialog/yesno.o
HOSTLD scripts/kconfig/mconf

*+% End of the configuration.
Execute 'make' to start the build or try 'make help'.

README

— Antoni Boucher

rustc codegen gcc

/t/linux (rust-nexttl|vs) $ -j20 KRUSTFLAGS="-Zcodegen-backend=/home/$USER/Ordinateur/Programmation/Rust/Projets/rustc codegen gcc/target/debug/librustc codegen gcc.so --
sysroot /home/$USER/Ordinateur/Programmation/Rust/Projets/rustc_codegen gcc/build sysroot/sysroot" HOSTRUSTFLAGS="-Zcodegen-backend=/home/$USER/Ordinateur/Programmation/Rust/
Projets/rustc_codegen gcc/target/debug/librustc_codegen gcc.so --sysroot /home/$USER/Ordinateur/Programmation/Rust/Projets/rustc_codegen_gcc/build sysroot/sysroot -Clto=no"

UPD include/config/kernel.release
DESCEND objtool
UPD include/generated/utsrelease.h

make[4]: 'install_headers' is up to date.
CALL scripts/checksyscalls.sh

*kk
% Rust compiler 'rustc' is too new. This may or may not work.

**%% Your version: 1.75.0

%% Expected version: 1.73.0

*kk

*%k%

% Rust bindings generator 'bindgen' is too new. This may or may not work.
**%x Your version: 0.68.1

%% Expected version: 0.65.1

*%k%k

*kk

*** Please see Documentation/rust/quick-start.rst for details
***% on how to set up the Rust support.

RUSTC L rust/alloc.o

EXPORTS rust/exports_bindings_generated.h
EXPORTS rust/exports_alloc_generated.h
RUSTC L rust/kernel.o

EXPORTS rust/exports_kernel_generated.h

AR samples/rust/built-in.a

cC sound/sound_core.o

RUSTC [M] samples/rust/rust minimal.o
cC arch/x86/entry/syscall_64.0
CE init/main.o

cc arch/x86/events/core.o

cc net/devres.o

cc ipc/compat.o

cc arch/x86/1ib/cpu.o

cc drivers/video/aperture.o

Ce security/keys/key.o

cC drivers/pci/access.o

cC io_uring/io_uring.o

cC block/bdev.o

& EELET — Antoni Boucher

cC mm/filemap.o

rustc codegen gcc

Please

NNNRNNNNNNNRNNNNN

00 00 CO 00 ©0 CO CO 00 CO CO 0O ©O CO 0O CO CO CO CO CO CO 0O O

324285]
324632]
324947]
325182]
3610461
3621791
3665641
443200]
443596]
445327]
647914]
648318]
657505]
741526]
745384]

md: If you don't use raid, use raid=noautodetect
md: Autodetecting RAID arrays.

md: autorun ...

md: ... autorun DONE.

EXT4-fs (sda): mounted filesystem 1d306666-713d-4592-9209-c929b5d7237c ro with ordered data mode. Quota mode: none.
VFS: Mounted root (ext4 filesystem) readonly on device 8:0.
devtmpfs: mounted

Freeing unused kernel image (initmem) memory: 2644K

Write protecting the kernel read-only data: 26624k

Freeing unused kernel image (rodata/data gap) memory: 1292K
x86/mm: Checked W+X mappings: passed, no W+X pages found.
Run /sbin/init as init process

process '/bin/busybox' started with executable stack

mount (51) used greatest stack depth: 14296 bytes left

sh (50) used greatest stack depth: 13848 bytes left

press Enter to activate this console.
~ # modprobe rust_minimal
[5.990838] rust_minimal: Rust minimal sample (init)
[5.991477] rust_minimal: Am I built-in? false

~ # modprobe rust_print

.237505]

237823]
238105]
238450]
238738]
239011]
239341]
239625]
239902]
240333]
240621]
240891]
241187]
241457]
241718]
241987]
242316]
242780]
243114]
244069]
244926]
2462971

rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:
rust_print:

Rust printing macros sample (init)
Emergency message (level 0) without args
Alert message (level 1) without args
Critical message (level 2) without args
Error message (level 3) without args
Warning message (level 4) without args
Notice message (level 5) without args
Info message (level 6) without args

A line that is continued without args
Emergency message (level 0) with args
Alert message (level 1) with args
Critical message (level 2) with args
Error message (level 3) with args
Warning message (level 4) with args
Notice message (level 5) with args

Info message (level 6) with args

A line that is continued with args

1

"hello, world"

[samples/rust/rust_print.rs:34] c = "hello, world"
"hello, world"

modprobe (57) used greatest stack depth: 12984 bytes left

— Antoni Boucher

rustc codegen gcc

File: samples/rust/rust minimal.ko

Hex dump of section '.comment':

File: samples/rust/rust _minimal.o 0x00000000 00727573 74632076 65727369 6f6€2031 .rustc version 1

0x00000010 2e37352e 302d6e69 6768746c 79202832 .75.0-nightly (2

Hex dump of section '.comment': 0x00000020 34393632 34623530 20323032 332d3130 49624b50 2023-10

0x00000000 00727573 74632076 65727369 6f6e2031 .rustc version 1 0x00000030 2d323029 20776974 68206c69 62676363 -20) with libgcc
0x00000010 2e37352e 302d6e69 6768746¢c 79202832 .75.0-nightly (2 0x00000040 62697420 3133230 2e300047 43433a20 jit 13.0.0.GCC:

0x00000020 34393632 34623530 20323032 332d3130 49624b50 2023-10 0x00000050 28474e55 29203133 2e302e30 20323032 (GNU) 13.0.0 202

0x00000030 2d323029 20776974 68206c69 62676363 -20) with libgcc 0x00000060 33303130 37202865 78706572 696d656e 30107 (experimen

0x00000070 74616c29 00004743 43322028 474e5529 tal)..GCC: (GNU)
0x00000080 2031332e 322e3120 32303233 30383031 13.2.1 20230801
0x00000090 00

— Antoni Boucher

GCC Rust (gccrs)

Kangrejos 2023 status report

Upstreaming in GCC 13.1

e The compiler was not released since it was still missing some basic features

* We spent a lot of time sending in patches and getting them approved, and gccrs is now a full
part of GCC

e This makes our work much easier for the planned first release of gccrs within GCC, which
should happen with GCC 14.1

— Arthur Cohen

GCC Rust (gccrs)

Technical side of things

e Macro name resolution

« Fixes to macro expansion to properly handle eager expansion of builtin macros
e Fixed point expansion and name resolution algorithm

« Implementation of derive macros framework, support for Clone and Copy

e Closures support

e |terators support

e Binding associated types (core::ops::Add<output = i32>>)

e Procedural macros are almost completely implemented

e Unicode support

e Support for Fn traits

 Integration of rustc error codes within the compiler
> This will help us pass the rustc testsuite when the time comes

e Compiler intrinsics
e Complete rework of our name resolution pass

o Jakub Dupak’s master thesis is about integrating polonius to gccrs, in order to have access to
a borrow checker

— Arthur Cohen

GCC Rust (gccrs)

Upcoming work

* Mostly upstreaming work... which takes a very long time

e Support for format_args! () builtin macro
> Kernel print macros, println!() in core ...

Upstreaming in GCC 14.1

o Patch upstreaming has started again
¢ Sending in commits which affect common GCC parts (such as the build system)

« Once these are accepted, we will begin upstreaming all of the work we did since ~April 2023,
which is around 900 commits

« We are hoping to be released as part of GCC 14.1

Talks

« FOSDEM
e GNU Cauldron (22/09/2023)
e EuroRust (13/10/2023)

— Arthur Cohen

Rust for Linux for Compiler Explorer

Already prototyped and discussed with Matt Godbolt.

The basic setup is quite straightforward.
A reasonable set of versions and kernel configs should be OK resource-wise.

Useful for development as well as training.

Makes it trivial to check how code is actually generated in the kernel.
e.g. no need to remember what flags to pass.

Ideally, also providing an Executor:
QEMU booting up a kernel.
Having a window to write an init script.
Useful for trainings etc.

More Compiler Explorer

Ideally, we would like to get:
bindgen as a compiler (versioned)
rustfmt as a compiler (versioned)
Clippy as a compiler (versioned)
Augmenting compiler diagnostics with hyperlinks and custom actions.
Pre-filling flags (e.g. -—edition for Rust) instead of the Overrides' implicit approach.

rust.docs.kernel.org

The original discussion on this started early 2021.

It has been a long time coming, but we got the OK to go ahead.
So expect the Rust generated docs to appear in that domain soon.
Per-tag access will be possible (e.g. v6.4, v6.6-rcl and so on).
Some details are still open.

e.g. should we have a top bar for “tag” selection?

Mitigations

-Zfunction-return support submitted to rustc.
https://github.com/rust-lang/rust/pull/116892

Patch series submitted to the kernel.

RETPOLINE, SLS, RETHUNK.
https://lore.kernel.org/rust-for-linux/20231023174449.251550-1-ojeda@kernel.org/

With both pieces, we are able to compile a kernel with ocbjtool enabled for
Rust that does not generate the corresponding warnings.

https://github.com/rust-lang/rust/pull/116892
https://lore.kernel.org/rust-for-linux/20231023174449.251550-1-ojeda@kernel.org/

CFl and KCFI

“Working on fixing the known issues [1], but these are corner cases and
hopefully shouldn't affect the Linux kernel/Rust-for-Linux.

Fixed building the standard library and its dependencies with CFI enabled.

Working on fixing CFI violations in the standard library [2][3] -- so far there are
only 2 total, and by disabling CFl in these locations, all core and std tests

pass.
The third violation mentioned in the GitHub issue is actually a bug in the CFl implementation
I'm finishing a fix for.”

[1] https://github.com/rust-lang/rust/issues?qg=is:open-+label:PG-exploit-mitigations+CFI

[2] https://github.com/rust-lang/rust/issues/115199
[3] https://github.com/rust-lang/rust/pull/115200

— Ramon de C Valle

https://github.com/rust-lang/rust/issues?q=is:open+label:PG-exploit-mitigations+CFI
https://github.com/rust-lang/rust/issues/115199
https://github.com/rust-lang/rust/pull/115200

Reviewers’ Recommendations

“This is a list of topics about which developers may want rules of thumb or
checklists to start with. This also helps reviewers to understand the code quickly
and provide useful feedbacks. Note that among all the reviewers, there is one we
care most: the future yourself.

These recommendations may be incomplete, since both Rust and Linux are
moving targets. In case where this document doesn’t cover, please consider the

following:

« Be Rust idiomatic as hard as possible.
« Being explicit first and then improving ergonomic usually work.
. If you find a good and reasonable way for a certain problem, please do add it

in this document!”

— Boqun Feng

Deprecating the rust branch

The rust branch was the original branch where development happened for
two years.

We kept it synchronized with mainline (by merging Linus’ tree into it), but
otherwise it did not get new features.

Recently, the latest major user (that we are aware of), the NVMe driver, got
rebased on top of rust-next.

Thus the branch is now frozen/archived.

— https://rust-for-linux.com/branches

https://rust-for-linux.com/branches

Introducing the rust-dev branch

A branch intended for:
Early testing by taking patches without too much concern.
Can also be done during the merge window.
Easier development.
Knowing what is in the queue.
Typically rebased on top of rust-next often.
Patches (that are not RFCs) should not be based on it.
Managed by Boqun Feng.

— https://rust-for-linux.com/branches

https://rust-for-linux.com/branches

Upstreaming

Upstreamed code

6.1: Initial merge (minimal support, Rust 1.62.0).

6.2: Opaque, Either, CString, CStr, BStr, #[vtable], concat idents!,
{static,build} assert!,therestof pr *! and more error codes, dbg! ...

6.3: Arc, ArcBorrow, UniqueArc, ForeignOwnable, ScopeGuard.

6.4: pinned-init APIl, AlwaysRefCounted, ARef, Lock, Guard, Mutex, SpinLock, CondVar, Task, uapi
crate...

6.5: Rust 1.68.2 (first upgrade), pinned-init improvements, Error’s name () support, AsRef for Arc...

6.6: Rust documentation tests as KUnit tests, pinned-init features, paste!, Rust 1.71.1, bindgen 0.65.1,
rust is available series...

6.7: Workqueue abstractions, Rust 1.73.0, toybox support (Android), x86 IBT, webpage and Maintainer Entry
Profile document.

RFCs/WIP: Binder, NVMe, DRM (Apple GPU, VGEM), file systems (tarfs, PuzzleFS), PHY, V4L2 codecs...

Better ergonomics for pinned initialisation

The Linux kernel has many data structures that require stable addresses
For example, struct list_head, described previously here

We had no ergonomic way of initialising them in Rust
In Rust, safe initialisation happens before we know the destination address
We needed unsafe blocks for this originally

We introduced pin-init
Allows us to initialised pinned objects without unsafe blocks — see Benno's talk at the Rust MC
on Wednesday!

https://youtu.be/fVEeqo40IyQ?t=1763
https://lore.kernel.org/rust-for-linux/Bk4Yd1TBtgoLg2g_c37V3c_Wt30FMS89z7LrjnfadhDquwG_0dUGz1c_9BlMDmymg0tCACBpmCw-wZxlg4Jl4W2gkorh5P78ePgSnJVR5cU=@protonmail.com/

Unexpected safety issue

Deadlocks are safe in Rust
A deadlock doesn’t result in undefined behaviour

This isn't true in the Linux kernel
In certain configurations, a situation that should have lead to a deadlock, leads to
user-after-free

We need to avoid sleeping in atomic context for safety
Previously, we believed we only needed it for correctness

We introduced klint
Static analysis to detect context violations — see Gary's talk at the Rust MC on Wednesday!

https://doc.rust-lang.org/reference/behavior-not-considered-unsafe.html
https://lore.kernel.org/lkml/YyivY6WIl%2FahZQqy@wedsonaf-dev/
https://lore.kernel.org/lkml/YyivY6WIl%2FahZQqy@wedsonaf-dev/
https://www.memorysafety.org/blog/gary-guo-klint-rust-tools/

Block layer abstractions

The community suggested that we implement an NVMe driver in Rust
Andreas presented performance numbers for that in LPC last year

We wrote block layer abstractions as part of that effort
The NVMe and Null blk drivers use these abstractions

We are improving and working on upstreaming the abstractions

So that block layer drivers can be written in Rust — see Andreas' talk at the Rust MC on
Wednesday!

https://lore.kernel.org/lkml/20210414194946.GW2531743@casper.infradead.org/
https://youtu.be/Xw9pKeJ-4Bw?t=8070

Android Binder

We had Binder as a WIP patch in the original Rust RFC in 2021
It is Android's driver for IPC

It was the first non-trivial Rust driver

But the community considered it too atypical and wanted to see other drivers
So we temporarily shifted our focus away

It is now feature complete
It's intended to replace the C implementation — see Alice's talk at the Rust MC on Wednesday!

https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/T/#m42dcc66a0678283669e32dbe26e0fbb4e7cb222c
https://lore.kernel.org/rust-for-linux/20231102133358.324909-1-aliceryhl@google.com/T/#m90ed95f43587269c2d41a5f68015a7aaf46cef92

Virtual file system

Needed by two Rust file systems: tarfs and puzzlefs

Per recommendation, only providing abstractions for needed features

An RFC patch series was posted
Some feedback provided, working on v2

Some unsoundness still present
When unreqistering file systems

https://lore.kernel.org/rust-for-linux/20231018122518.128049-20-wedsonaf@gmail.com/
https://www.youtube.com/watch?v=OhMtoLrjiBY
https://lore.kernel.org/rust-for-linux/2023071049-gigabyte-timing-0673@gregkh/
https://lore.kernel.org/rust-for-linux/20231018122518.128049-1-wedsonaf@gmail.com/
https://lore.kernel.org/rust-for-linux/CANeycqpwV+uzSp2skuO8TQP5Py-J2qe_=X3j_XL74QwevRXr9w@mail.gmail.com/

Discussion topics

Soundness issues for stable

A soundness issue in Rust is a mistake that could cause otherwise safe Rust

code to introduce UB.
They may not materialize in current kernel/compiler versions.
However, we could have concrete instances where they are a real issue, especially
considering distributions and out-of-tree modules.

We want to evaluate how feasible it would be to backport these long-term.

So far, we have backported several.
Probably worth a mention in the stable kernel rules.

Rust version policy

We cannot guarantee newer Rust versions will work due to the unstable

features in use.
The Rust language is stable, i.e. it promises backwards compatibility.

In other words, our “minimum version” is in the future.

Thus, for now, we are tracking the latest version of the Rust compiler.
Quite unusual for the kernel.

Stable backports have not been an issue so far.
Should get easier as features get stabilized and we can establish the minimum version.

— https://rust-for-linux.com/rust-version-policy

https://rust-for-linux.com/rust-version-policy

Duplicate drivers exception

A few maintainers are open to the idea of experimenting with Rust, but they may
want to start simple with a driver they are familiar with.

However, such a driver would violate the "no duplicate drivers" rule.

Others have expressed an interest in writing Rust drivers, but the required
abstractions are not there, and merging those would break the "no code without an
expected in-tree user” rule.

Some maintainers may want to avoid a flag day, or may prefer to iterate in-tree.

For these and other reasons, we have requested an exception for Rust drivers.

— [MAINTAINERS SUMMIT] The Rust Experiment

https://lore.kernel.org/ksummit/CANiq72=99VFE=Ve5MNM9ZuSe9M-JSH1evk6pABNSEnNjK7aXYA@mail.gmail.com/

Rust for Linux

Miguel Ojeda
Wedson Almeida Filho

Backup slides

gh Linux tree
drivers/ include/ ——

foo/ / kernel \ ’ bindgen]
crate

my_foo W foo bar (bindings
driver J Cafe subsystem subsystem Uncate L crate
Safe Abstractions

A)

//// Forbidden! ////

@ Rust tree

library/

core
crate

H

alloc

crate

f\ Linux tree
:

-

(&

|

-~

rust/

N\ ' 4

alloc kernel macros
crate crate crate
J \ &
)
. . \
builtins exports | helpers
crate

include/

bindgen l

bindings
crate

