
Vcpu priority boosting for
latency sensitive workloads

Vineeth Pillai (Google)
Joel Fernandes (Google)

1

Agenda
● The problem
● The root cause
● The solution
● Some performance numbers
● Future work

2

The Problem
● Guest virtual machine experiences considerable latencies when the host

is under load (sometimes 100s of ms of latency).
○ Overcommitted physical cpus(multiple VMs, host processes, …)

● Android apps runs in a virtual machine in chromeOS and on low-end
devices under considerable load, we observe

○ Audio glitches
○ Stuttering and unsmooth Video playback

3

The root cause
● Double scheduling: Host schedules vcpu threads and the guest schedules

the tasks running inside the guest
● But both schedulers are unaware of the other

○ Hosts schedules vcpu threads without knowing what's being run on the vcpu
○ Guest schedules tasks without knowing where the vcpu is running physically

● vCPUs are regular CFS tasks in the host and does not get to run in a timely
fashion when the host is experiencing load

● Host scheduler tries to be fair and doesn’t know about the priority
requirements

● This can cause issues with latencies, power consumption, resource
utilization etc.

4

An example
Traces collected (guest and host) when video lag was happening

(android’s VLC player)

5

A (possible) Solution for minimizing latencies
● CFS is not strictly priority aware, so let's do RT!
● Boosting priority of vcpus to RT helps
● But vcpus running as RT through the life time of a VM has negative impact

to the whole system
● The issue is manifested - vcpus may hijack the host!

○ We have the same problem now: vcpus running a normal workload may preempt a
latency sensitive workload in the host.

6

Another (possible) solution
● Let the host and guest talk ;-)
● Share scheduling information between

host and guest
● A cooperative scheduling framework

by sharing the information between
host and guest so that both could
make educated scheduling decision

7

Dynamic vcpu priority management
● One specific use case for cooperative guest/host scheduling
● Aimed at reducing latencies for latency sensitive tasks in the guest.
● Guest shares the priority requirements and host can boost/unboost as

needed

8

Dynamic vcpu priority management
● Host proactively boosts the vcpu thread when it knows that the guest will

be running a latency sensitive work load, example: interrupt injection
● Guest shares its need for a priority boost when running latency sensitive

workloads
○ Host boosts the vcpu thread and shares the boost status with guest

● Guest can request an unboost when it no longer runs latency sensitive
workloads

● Host implements throttling and forceful unboosting for buggy/rogue
guest kernels

9

Latency sensitive guest contexts
● NMIs, interrupts, softirqs
● Tasks with priority higher than SCHED_OTHER
● Preemption disabled in guest

10

Priority Inversion - Need to boost spinlocks too!
● May happen if not all Vcpus are boosted
● CFS VCPU preempted after taking a spinlock
● RT VCPU blocks on the spin lock acquired by the above CFS VCPU
● Even worse if the the RT VCPU preempts the CFS VCPU holding the lock on

the same physical CPU.

11

Implementation (Proof of Concept)
● x86 (Intel and AMD) only but easily portable to other architectures

● Guest uses MSR to communicate the GPA of shared memory location
○ This also acts as guest intent to use the functionality

● Boosts the vcpu to RT
○ SCHED_RR and priority 8 by default and is tunable

● Unboost to SCHED_OTHER with nice 0
○ TODO: Could be made tunable. POC it is fixed.

https://github.com/vineethrp/linux/commits/kvm-hypercall-6.5.y
12

https://github.com/vineethrp/linux/commits/kvm-hypercall-6.5.y

Implementation (Proof of Concept)
Enabling the feature:

● Host uses CPUID to advertise the feature to guest
○ VMM can enable/disable the advertisement (PoC always advertises)

● Knobs to enable/disable this feature globally and per-vm.

https://github.com/vineethrp/linux/commits/kvm-hypercall-6.5.y
13

https://github.com/vineethrp/linux/commits/kvm-hypercall-6.5.y

Implementation Details: Synchronous boost/unboost
● Uses hypercall mechanism.

● Guest shall request a boost via hypercall if needed:
○ Currently not used. Only lazy (async) boosting is used in the POC.

● Guest requests an unboost via hypercall once it completes the latency

sensitive workload:
○ Switching to SCHED_OTHER (normal tasks) in scheduler

○ Return to user mode SCHED_OTHER after servicing interrupt, softirq, preempt enable etc.

○ IRQ disabling/enabling doesn’t do boosting currently.

14

What’s hypercall overhead like?
○ Overhead of Hypercall seen to be 10-20 micro seconds, or so.

■ Caveat: Unless VM is nested virt.

○ Seems very reasonable, as the latencies this fixes are 3 orders of

magnitude higher (10s or 100s of ms) !

15

Implementation Details - Asynchronous boosting
● Guest shares its intent (boost, preemption state) via shared memory and

continues execution as long as it can.

● On the very next VMEXIT, host takes action.

● Avoids an extra VMEXIT caused by hypercall.

16

Implementation Details: Proactive boosting
● Host boosts the vcpu threads on situations where it has clear information

that guest is running a latency sensitive workload
○ Interrupt Injection

■ Before injecting an interrupt into the guest, host boosts the priority of the

vcpu

○ Guest VCPU halt/blocking

■ When the guest vcpu halts, the wakeup would be due to an event which needs

to be handled immediately(interrupts, IPIs etc).

■ Priority is boosted as the guest vcpu task is switched out.

17

Care to be taken during interrupt handling

In VMM context (for emulated) or VFIO
interrupt handler (for pass thru)

1. Inject interrupt into guest (VCPU0)
2. kick_vcpu()

a. Boost VCPU0 to RT
b. Update shared page
c. Wakeup process.

In vCPU thread
context:

schedule VCPU0
(vcpu_run)

Service Interrupt (NMI, IRQ,
soft IRQ)

In the Interrupt exit path,
check NEED_RESCHED
and deboost if not set, or

exiting to CFS.

Deboost and
update

shared page

Resume VM

Guest

Host

Timeline

Scenario: Emulated device interrupt and VFIO pass thru devices. Host needs to inject an
interrupt in guest on VCPU0

sc
he

du
le

()

18

VCPU is
boosted

Care to be taken during POSTED interrupt handling

Posted Interrupt on guest (VCPU0)
Interrupt remapping hardware directly

injects the interrupt into the guest

Guest Interrupt Handler:
Check if the VCPU is

boosted (shared page)

Deboost if needed in
Interrupt exit path

Deboost
VCPU to cfs
and update

shared page

Resume
VM

Guest

Host

Timeline

Scenario: Guest is ON CPU. Posted interrupt is received directly in the guest on VCPU0

Service
Interrupt

Request VCPU boost
(State update)

Boost VCPU
to RT and

update shared
page

VCPU not
boosted

VM EXIT

19

Implementation Details: Shared memory communication
● Guest lets the host know about its need

for boosting/un boosting

● Guest lets the host know if preemption

is disabled or not

● Host sees the above on the very next

VMEXIT and takes action accordingly.

● Host updates the shared memory with

the boost status. Guest uses this to

avoid unnecessary memory updates and

hypercalls

20

Performance
● Synthetic Test (micro benchmarks)

○ Cyclictest (guest and host) when host is idle and busy
○ Busy host simulated by stress-ng
○ Intervals 500 us and 1000 us.

● Simulating real world workloads
○ Oboetester glitch test.

21

Synthetic tests - Idle Host
(cyclictest - SCHED_RR)

VM: Average latency in micro seconds

VM: Max latency in micro seconds

Legend:
Vanilla: Host kernel: 6.1 guest kernel: 5.10
Vcpu_boost: Host and guest kernels with the patches
Static_rt: vanilla 6.1, with vcpu threads boosted to RT

Host: Average latency in micro seconds

Host: Max latency in micro seconds

Interval(us) vanilla vcpu_boost static_rt
500 9 9 10

1000 34 35 35

Interval(us) vanilla vcpu_boost static_rt
500 5 3 3

1000 3 3 3

Interval(us) vanilla vcpu_boost static_rt
500 1577 1433 140

1000 6649 765 204

Interval(us) vanilla vcpu_boost static_rt
500 1577 1526 15969

1000 697 174 2444

22

Synthetic tests - Busy Host
(cyclictest - SCHED_RR)

VM: Average latency in micro seconds

VM: Max latency in micro seconds

Legend:
Vanilla: Host kernel: 6.1 guest kernel: 5.10
Vcpu_boost: Host and guest kernels with the patches
Static_rt: vanilla 6.1, with vcpu threads boosted to RT

Host: Average latency in micro seconds

Host: Max latency in micro seconds

Interval(us) vanilla vcpu_boost static_rt
500 887 21 25

1000 6335 45 38

Interval(us) vanilla vcpu_boost static_rt
500 6 6 7

1000 11 11 14

Interval(us) vanilla vcpu_boost static_rt
500 216835 13978 1728

1000 199575 70651 1537

Interval(us) vanilla vcpu_boost static_rt
500 2075 2114 2447

1000 1886 1285 27104

23

Simulating real world workloads: Audio glitches
Oboetester app in android vm on chromeos used to test audio glitches

Host kernel : 6.1

Guest Kernel: 5.10

Buffer size Noload Speedometer

Vanilla 6.1 vcpu_boost Vanilla 6.1 vcpu_boost

96 (2ms) 20 4 1365 67

256 (5ms) 3 1 524 23

512 (10ms) 0 0 25 24

24

Video lag example with the fixes applied
Traces collected (guest and host) during video playback

(android’s VLC player)

25

Other use cases for cooperative scheduling
● Host can share the physical cpu load and pressure to guest and also the

vcpu physical placement.
○ Guest can effectively decide the most effective vcpus for the tasks it needs to run
○ Guest can also request an effective vcpu placement if it has the above information. Host

can accept or deny the request based on its requirements.

● Guest can share the vcpu load with the host and may include task level
information(priority, load etc)

○ Host can make an educated decision on where to place the guest vcpus appropriately
○ Host can also suggest task placement hints to the guest.

26

Future Work
● Generic implementation which would make it easy for porting to other

architectures
● Use paravirt ops
● Optimizations in the critical path for speed and cache efficiency.
● Standardize the memory sharing framework so as to extend it for other

use cases.
● Priority management for irq disable/enable code paths.
● Optimizing proactive boosting during interrupt injection.

27

28

