
Khasim Syed Mohammed

Engineering Lead – Texas Instruments

1

Resolve and standardize
early access to hardware
for automotive industry

with Linux

Who am I ?

• Linux device driver developer 2002-2012 with Texas Instruments, though most of kernel contributions

went in 2.6 ☺

• Founder member for beagleboard.org with Jason Kridner

• Tech lead at Linaro (2012-2022)

• 64bit Android on Arm software simulators

• Project Ara – Modular phone project from Google

• Android on Arm Servers with Docker containers

• Arm’s N1SDP yoctification for UEFI and other kernel components.

• Back in Texas Instruments (2022) as Engineering Lead for Sitara MPU products.

• Getting opportunity to work closely with automotive industry,

• who are on proprietary operating systems for many use cases

• relying on on-chip MCUs for safe and time critical applications.

Why am I here ?

Share and Learn to build the automotive use cases the “Linux” way with Linux subsystems

(Kernel, U-Boot, distros) :

• CAN response < than 100 msec.

• Wake up response on Ethernet < 150 msec.

• Audio tone on speakers < 500 msec.

• Camera stream to screen < 750 msec

• Display Animated graphics < 1 sec.

• and more ...

The solution industry has found is

either with

- Heterogeneous processors (on

chip MCUs) that is not

scalable.

- With non- standard (no open

standards followed) and not so

Linux friendly approach.

Safety

Certification

Performance

(Early boot)

Power

Management

• Enable fault less systems with proven

safety qualified “open source” software.

Enable power efficient systems.

• Elaborate PM policies for remote cores.

• User space hooks to handle power modes.

• Suspend to RAM policies.

What I want to walk away with ?

• Deep dive into exact problems and the current solutions and how we migrate the current RTOS based

solutions to switch to Linux “only” based solutions.

• How we standardize the "Linux late attach" with heterogeneous SOC.

• If I could find representatives from the automotive OEM, SOC manufacturers and Linux kernel and user

space maintainers to :

– Collaborate and help in defining "Linux automotive" standards for the auto use case implementation

– Harden & improvise the Linux kernel & drivers to meet the key performance requirements.

– Learn from the subject matter experts here and incorporate the learnings in our solutions offered to

customers / industry.

Problem Statement

(ask)
Current Solution

(lacks community collaboration)

Long term solution
(Standardized, Linux based

public and collaborative)

1 : “Safe & Secure” Boot Loaders
Why Special Boot loaders ?

• SPL is not tuned to required performance

(boot < 10 msec)

• SPL is not easily structured to boot remote

heterogenous cores (at least for TI)

• SPL doesn’t meet safety compliance (TUV

certified) with MISRA C and LDRA tool

compliance.

• SPL is more prone to security vulnerabilities

(as per industry stalwarts)

• SPL to Linux handoff need tweaks

(peripherals already configured by SPL

before Linux)

SPL

U-Boot

Linux

FilesystemHypervisor

L
in

u
x
 -

w
a
y

F
a

lc
o

n

Secure boot

Loader

U-Boot

Linux

FilesystemHypervisor

A
u
to

 -
w

a
y

F
a

lc
o

n

Is public open source SBL an option ?

• TI has public SBL, open for

community collaboration & we can

commit to safety qualification of

software.

TI SBL Public Sources : https://github.com/TexasInstruments/mcupsdk-core/tree/next/examples/drivers/boot

https://github.com/TexasInstruments/mcupsdk-core/tree/next/examples/drivers/boot

2 : Devices (display, camera, sensors) in Action instantly
Why Configure early ? And why DMA / I2C ?

• Few sensors have more than 4K registers.

• Registers are configured over I2C (non

contiguous) or DMA.

• Device should be ready before Linux drivers

and apps are up. Can’t spend time after boot.

• Current solution uses MCU - brings in safety

compliance but increases the cost of SOCs.

• Linux late attach : while MCUs have

performed all the initializations and Linux

takes over, the handoff isn’t clear for every

driver (example: simple framebuffer)

SPL

U-Boot

Linux

Configures

sensor using

DMA or I2C

L
in

u
x
 -

w
a
y

Secure boot

Loader

U-Boot

Linux
A

u
to

 -
w

a
y Micro

controller

Configures

sensor

using DMA

or I2C

Peripheral

is ready to

use

Peripheral

is ready to

use

If U-Boot

could?

What’s the long term solution ?

• Make U-Boot / SPL multi-threaded ?

• If DMA/I2C triggered from U-Boot, we need a

standard method to release, reallocate the

channels, memory region.

• How to utilize the multiple “A”-cores

Current solution: https://www.ti.com/tool/PROCESSOR-SDK-J721E

https://www.ti.com/tool/PROCESSOR-SDK-J721E

3 : Power management with remote cores
Power Management and handle remote cores.

• No standards defined for notification

– ex: how long to wait, min/max expectations

from remote core after notify, etc..

• Every reload of firmware costs extra cycles for

authentication of firmware - impacts resume

latency numbers.

• Cores are turned on/off abruptly, the states aren’t

preserved before suspend, left for RTOS world to

decide.

• Scaling frequency up/down dynamically need

further notification mechanism which isn’t available

for remote cores.

• There are multiple different modes (other than just

deepsleep, stndby, etc) where Linux user space

hooks are missing.

L
in

u
x
 -

w
a
y

Linux

RTOS
C

o
re

 0
C

o
re

 1
C

o
re

 2
On suspend

M
a

in
 c

o
re

- Notify cores

- Preserve state in remote core (not

strict)

- Shutdown

- Reload firmware on resume

Custom IPC

RTOS

RTOS

Load firmware

for remote cores

A
u
to

 -
w

a
y

PM core

What’s the long term solution ?

• Need an Industry standard – RTOS and Linux

community should collaborate and engage in

defining this standard.

• Benchmarking tools should be made available.

• Mimics the Linux

way

• Isn’t sufficient with

Industry ask

especially with EV

picking up in every

segment.

• Every SOC

company will define

their own

framework, tools

and publish

“incomparable”

results

SPL

U-Boot

4 : Early Ethernet / Connectivity Notifications

Improvise Phy Link up time :

• Improvement because the MAC port open

function call is pushed into probe from system-

networkd

• Phy link up time depends on the phy and its

configuration used. It varies from boot to boot.

This was the best time.

SPL

U-Boot

Linux

L
in

u
x
 w

a
y

Secure boot

Loader

A
u
to

 -
w

a
y

M
a

in

c
o

re

- CPSW Probe

- System-networkd

- MAC open

- Phy Link Up

Component MAC open in

networkd

MAC open in

driver probe

Kernel

MAC port open

~ 920 ms ~10 ms

Phy link up 3100 ms ~ 1300

Total Boot time * 2.5 to 3 seconds can be saved.

U-Boot

Linux
M

a
in

c
o

re

- CPSW Probe

- MAC open

- System-networkd

- Phy Link Up

Long terms solutions
• What’s alternative to MAC open in probe ?

• CAN has been left to the mercy of AutoSAR – No Linux/SPL

possibilities for early CAN response < 50ms

• Ethernet stack require tweaks for network boot, packet

handling by firmware on MCUs – need an upstream path.

Let’s not Conclude – let’s discuss

– Other questions :

» Has Android automotive OS solved the issues being discussed here – No. Are they applicable

there as well ? Yes.

» Key question that pops up: What happens when Linux kernel crashes ? Why is this still a doubt

? How to harden Linux enough, what other constraints to impose on application/user space to

gain the confidence.

» Is ELISA the forum for any standardized mechanisms to implement these hacks and fixes in a

standardized way ?

– How we get safety certification out of the way for SPL, U-Boot, ATF and Linux subsystems.

– Are there more such fixes required at product level that needs to be further discussed.

– Looking for a forum where we discuss this beyond respective kernel mailing list.

If interested to collaborate and work with us on these initiatives : khasim@ti.com

Thank you.

Contact Information:

– khasim@ti.com

– nsekhar@ti.com

– j-keerthy@ti.com

– vigneshr@ti.com

– srk@ti.com

10

Collaborate with us @

‒ https://www.ti.com/linux

‒ http://opensource.ti.com/

‒ https://www.ti.com/processors

‒ https://www.ti.com/edgeai

‒ https://github.com/TexasInstruments

www.ti.com/sitara

Thanks to open source solutions and partners

mailto:khasim@ti.com
mailto:nsekhar@ti.com
mailto:j-keerthy@ti.com
mailto:vigneshr@ti.com
mailto:srk@ti.com
https://www.ti.com/linux
http://opensource.ti.com/
https://www.ti.com/processors
https://www.ti.com/edgeai
https://github.com/TexasInstruments

