
Do nothing fast:
How to scale idle CPUs ?

 Linux Plumbers Conference - November 2023

1

Mathieu Desnoyers
EfficiOS Inc.



How it All Started...
● RSEQ mm_cid feature added a raw spinlock in the 

scheduler context switch fast-path,
● This caused regressions on some workloads at scale 

(reported by Intel, AMD and Oracle),
● The fix REMOVING the spin lock fixed those 

regressions, but it introduced performance regressions 
on the hackbench workload at scale (reported by AMD),

● I could reproduce on a 2-sockets, 192-core, 384 HW 
threads EPYC 9654.

● Hackbench workload: thread mode, 32 groups, 20 fds 
per group, pipes, 100 bytes messages, 480k loops.

2



Several Approaches Attempted

● Extend cpu idle state for 1ms
● Favor almost idle previously used CPUs for wake affine
● Skip queued wakeups only when L2 is shared
● Rate limit task migration
● Bias runqueue selection towards almost idle prev CPU
● Bias runqueue select towards prev CPU

● Introduce UTIL_FITS_CAPACITY feature
● Introduce SELECT_BIAS_PREV to reduce migrations

3



Effects of Those Approaches

● Speed up hackbench workload from 49s to 29s-35s.
● Reduce the migration rate.

4



Client-server Workload Regression

● Bias towards prev runqueue helps hackbench (N:M), but 
regresses client-server workloads (1:1).

5



Issue with Work Conserving
● RT definition: In a system with N CPUs, the N "higest 

priority" tasks must be running (in real-time),
● Being work conserving, the Linux fair scheduler never 

leaves cores idle when there is work to do,
● On large systems, this correlates with observation of 

high migration rates for certain workloads and CPU 
utilization,

● It is a concern for:
● Runqueue locking overhead/contention,
● Cache and NUMA misses of workload memory 

accesses.

6



Task Placement (WIP)

● Communication patterns based on wakeups 
(waker/wakee),

● Convergence of task placement based on a 
communication pattern predictor (task packing),

● Predictor is implemented with per-task counters based 
on the hardware hierarchy (numa nodes, clusters (LLC), 
cores),

● Requires a new runqueue metric. 

7



Scheduler Runqueue Metrics

● Average (includes sleeping/blocking tasks):
● Utilization,
● Runnable,
● Load,

● Enqueued estimate:
● Utilization,
● Runnable (new metric)

8



Runqueue Selection Algorithm
● Switch with waker (WF_SYNC),
● Find NUMA node, cluster, core with maximum 

connectivity for task,
● Perform backtracking to find core with enough capacity, 

while keeping track of core with minimal overcommit.
● If target core can fit task without overcommit, use it,
● Search across cluster (LLC) for a core with enough 

remaining capacity for task,
● Search across NUMA node for a core with enough 

remaining capacity for task,
● Search entire machine for a core with enough 

remaining capacity for task,
● If all fails, use the core with minimal overcommit.

9



Current Results

● Hackbench performance on par with mainline fair 
scheduler (~49s),

● On a 2 NUMA nodes machine, the packing works a little 
too well and leaves all CPUs of node 1 at 66% idle, 
compared to CPUs of node 0 which are 10% idle.

● In comparison, a mainline kernel is 40% idle on all 
CPUs.

● What has not been done so far:
● Integration with task balancing algorithm,
● Integration with NUMA balancing.

10


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

