Linux Plumbers Conference - November 2023

Do nothing fast;
How to scale idle CPUs ?

Mathieu Desnoyers
EfficiOS Inc.

EficiOS 1



How It All Started...

e RSEQ mm_cid feature added a raw spinlock in the
scheduler context switch fast-path,

e This caused regressions on some workloads at scale
(reported by Intel, AMD and Oracle),

e The fix REMOVING the spin lock fixed those
regressions, but it introduced performance regressions
on the hackbench workload at scale (reported by AMD),

e | could reproduce on a 2-sockets, 192-core, 384 HW
threads EPYC 9654.

e Hackbench workload: thread mode, 32 groups, 20 fds
per group, pipes, 100 bytes messages, 480k loops.

EficiOS :



Several Approaches Attempted

Favor almost idle

Bias runqueue se
Bias runqueue se
* Introduce UTIL _

Extend cpu idle state for 1ms

previously used CPUs for wake affine

Skip queued wakeups only when L2 is shared
Rate limit task migration

ection towards almost idle prev CPU
ect towards prev CPU

FITS _CAPACITY feature

* Introduce SELECT_ BIAS PREV to reduce migrations

EfficiOS



Effects of Those Approaches

e Speed up hackbench workload from 49s to 29s-35s.
e Reduce the migration rate.

&ficiOS .



Client-server Workload Regression

e Bias towards prev rungueue helps hackbench (N:M), but
regresses client-server workloads (1:1).

EficiOS :



Issue with Work Conserving

e RT definition: In a system with N CPUs, the N "higest
priority"” tasks must be running (in real-time),

e Being work conserving, the Linux fair scheduler never
leaves cores idle when there is work to do,

e On large systems, this correlates with observation of
high migration rates for certain workloads and CPU
utilization,

e |tis a concern for:

* Rungueue locking overhead/contention,
* Cache and NUMA misses of workload memory
accesses.

EficiOS :



Task Placement (WIP)

e Communication patterns based on wakeups
(waker/wakee),

e Convergence of task placement based on a
communication pattern predictor (task packing),

e Predictor is implemented with per-task counters based
on the hardware hierarchy (numa nodes, clusters (LLC),
cores),

e Requires a new rungueue metric.

EficiOS :



Scheduler Runqueue Metrics

e Average (includes sleeping/blocking tasks):
* Utilization,
* Runnable,
* Load,
e Enqueued estimate:
* Utilization,
* Runnable (new metric)

EfficiOS



Runqueue Selection Algorithm

e Switch with waker (WF_SYNCQC),
¢ Find NUMA node, cluster, core with maximum
connectivity for task,
e Perform backtracking to find core with enough capacity,
while keeping track of core with minimal overcommit.
* |f target core can fit task without overcommit, use It,
* Search across cluster (LLC) for a core with enough
remaining capacity for task,
* Search across NUMA node for a core with enough
remaining capacity for task,
* Search entire machine for a core with enough
remaining capacity for task,
* If all fails, use the core with minimal overcommit.

EficiOS ;



Current Results

e Hackbench performance on par with mainline fair
scheduler (~49s),

¢ On a 2 NUMA nodes machine, the packing works a little
too well and leaves all CPUs of node 1 at 66% Iidle,
compared to CPUs of node O which are 10% idle.

® |n comparison, a mainline kernel is 40% idle on all
CPUs.

¢ \What has not been done so far:
* Integration with task balancing algorithm,
* Integration with NUMA balancing.

Eﬁici OS 10



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

