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How it All Started...
● RSEQ mm_cid feature added a raw spinlock in the 

scheduler context switch fast-path,
● This caused regressions on some workloads at scale 

(reported by Intel, AMD and Oracle),
● The fix REMOVING the spin lock fixed those 

regressions, but it introduced performance regressions 
on the hackbench workload at scale (reported by AMD),

● I could reproduce on a 2-sockets, 192-core, 384 HW 
threads EPYC 9654.

● Hackbench workload: thread mode, 32 groups, 20 fds 
per group, pipes, 100 bytes messages, 480k loops.
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Several Approaches Attempted

● Extend cpu idle state for 1ms
● Favor almost idle previously used CPUs for wake affine
● Skip queued wakeups only when L2 is shared
● Rate limit task migration
● Bias runqueue selection towards almost idle prev CPU
● Bias runqueue select towards prev CPU

● Introduce UTIL_FITS_CAPACITY feature
● Introduce SELECT_BIAS_PREV to reduce migrations
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Effects of Those Approaches

● Speed up hackbench workload from 49s to 29s-35s.
● Reduce the migration rate.
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Client-server Workload Regression

● Bias towards prev runqueue helps hackbench (N:M), but 
regresses client-server workloads (1:1).
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Issue with Work Conserving
● RT definition: In a system with N CPUs, the N "higest 

priority" tasks must be running (in real-time),
● Being work conserving, the Linux fair scheduler never 

leaves cores idle when there is work to do,
● On large systems, this correlates with observation of 

high migration rates for certain workloads and CPU 
utilization,

● It is a concern for:
● Runqueue locking overhead/contention,
● Cache and NUMA misses of workload memory 

accesses.
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Task Placement (WIP)

● Communication patterns based on wakeups 
(waker/wakee),

● Convergence of task placement based on a 
communication pattern predictor (task packing),

● Predictor is implemented with per-task counters based 
on the hardware hierarchy (numa nodes, clusters (LLC), 
cores),

● Requires a new runqueue metric. 
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Scheduler Runqueue Metrics

● Average (includes sleeping/blocking tasks):
● Utilization,
● Runnable,
● Load,

● Enqueued estimate:
● Utilization,
● Runnable (new metric)
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Runqueue Selection Algorithm
● Switch with waker (WF_SYNC),
● Find NUMA node, cluster, core with maximum 

connectivity for task,
● Perform backtracking to find core with enough capacity, 

while keeping track of core with minimal overcommit.
● If target core can fit task without overcommit, use it,
● Search across cluster (LLC) for a core with enough 

remaining capacity for task,
● Search across NUMA node for a core with enough 

remaining capacity for task,
● Search entire machine for a core with enough 

remaining capacity for task,
● If all fails, use the core with minimal overcommit.
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Current Results

● Hackbench performance on par with mainline fair 
scheduler (~49s),

● On a 2 NUMA nodes machine, the packing works a little 
too well and leaves all CPUs of node 1 at 66% idle, 
compared to CPUs of node 0 which are 10% idle.

● In comparison, a mainline kernel is 40% idle on all 
CPUs.

● What has not been done so far:
● Integration with task balancing algorithm,
● Integration with NUMA balancing.
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