= Microsoft

Hypervisor-Enforced Kernel Integrity for Linux,
powered by KVM - RFC v2

Linux Plumbers Conference

Mickaél Salatiin & Madhavan Venkataraman

2023-11-14


https://lpc.events/event/17/contributions/1486/
https://digikod.net/

Protect Linux users against Attackers can leverage security vulnerabilities
using kernel exploits to get access to all

kernel exploits users’ data.




Security property guaranteeing critical parts
Kernel integrity of a virtualized Linux kernel to not be
tampered by malicious code or data.




One kernel vulnerability is enough to
bypass kernel integrity.

Problem
300+ Linux CVEs in 2022

including 8 code executions



https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2022/opec-1/Linux-Linux-Kernel.html

Overview



Main threat Trust can diminish over time
model

The attacker has arbitrary read and write
access to the guest kernel e.g., thanks to
exploited vulnerability by malicious

« User space process
« Network packet

« Block device

E.g., DirtyCOW (CVE-2016-5195)




Extended We'd like to not trust (too much) the host
threat model

(VMM)

pKVM should be kept in mind, along with
confidential computing




Leverage The main issue with kernel self-protection
virtualization

s that it is a self-protection.

We'd like to rely on a higher privileged
component: the hypervisor




State of the art « grsecurity/PaX, OpenBSD

« Windows's Virtualization Based Security
(i.e., VBS, HVCI, HyperGuard...)

- Samsung RKP, Huawei Hypervisor
Execution Environment

« 10S KPP/Watchtower and KTRR/RoRgn
» ...and a lot of PoC




Properties:
 The guest VM configures itself

- The hypervisor manages enforcements

« The VMM protects its resources and get
attack signals

Usability:
« Users manage their own kernels

» This feature needs to be simple to use
and standalone: almost no configuration



Chain of trust

At boot,
protected by —
secure boot

Firmware
Bootloader
Host kernel

VMM

hypervisor

Guest applications }

Boot steps

At runtime,
protected by
hypervisor

At runtime,
protected by
guest kernel



Security policies Improve Linux kernel hardening:

« Enforce critical CPU register pining: CRO.WP,
CR4.SMEP...

 Enforce read-only and non-executable kernel
data (e.g., syscall table, certificates, keys,
security configuration)




VM lifetime in
a nutshell

VMM:

« Assigh memory pages to a new VM
« Run the VM

« Handle VM exits (e.g., emulation)

VM boot time:
« Map memory pages with permissions

- After some variable updates, set them read-only

VM run time;

 Load kernel modules or eBPF programs, use
ftrace or kprobes...



RFC’s main From RFC v1 to RFC vZ:

* From static to dynamic memory
permissions thanks to a new memory
table: kernel modules, eBPF...

* No more enforced execute XOR write for
now, we'll get back on that later

* Leveraging the new per-page attributes
patch series

* New KVM interface: 2 new types of VM
exits and related capabilities

* New hypercall flag to get supported
features

changes



https://lore.kernel.org/all/20230505152046.6575-1-mic@digikod.net/
https://lore.kernel.org/all/20231113022326.24388-1-mic@digikod.net/

KVM implementation



CR-pinning Enforce a bitmask on control registers to
hypercall

guard against locked features (e.g. SMEP)

kvm_hypercall3(KVM_HC_LOCK_CR_UPDATE,
0, // control register
X86_CRO_WP, // flag to pin
flags); // options

Can create a VM exit on configuration or
policy violation for the VMM to be able to
do something.

Generate a GP fault on policy violation.




Memory Part of hardware virtualization, the Second
_ayer Address Translation or Two
Dimensional Paging:

 Intel's EPT
« AMD’s RVI/NPT

permissions

Enable to manage VM memory, and add a
second complementary layer of
permissions, only controlled by the
hypervisor.




Memory
protection
hypercall

Configure (a subset of) EPT permissions.

kvm_hypercall1(KVM_HC_PROTECT_MEMORY,
pa);

The pagelist atomically maps a set of
memory ranges with read, write and
execute permissions.

Generate a synthetic page fault on policy
violation.



Executable Issue: efficiently enforce restriction on
kernel executable pages without
impacting access to user space pages

permission(s)

Solution: leverage Intel's Mode Based
Execution Control (MBEC)

Split the execution permission into:
 Kernel mode execution

« User mode execution




OxFFFF...

executable
Kernel memory __end_rodata
o
permissions vdso_end
WithOUt MBEC vdso start
‘
___start_rodata
executable
_etext
_text
executable

0x0000...




OxFFFF...

non-executable
Kernel memory __end_rodata
permissions vdso_end

. read-only

Wlth MBEC vdso_start
___start_rodata

non-executable
_etext
_text

non-executable

0x0000...




Guest kernel APl and implementation



Guest API Normalized common layer that can be
used by any hypervisor to receive guest

requests:

« Map kernel memory pages with required
permissions or attributes

« Hide hypervisor implementation details
(e.qg., hypercalls)

« Shared test suites




Memory table
and address
space walker

Objective: enforce the union of permissions for

a physical page across multiple mappings.

Solution:

- Generic memory page table to reflect the
hardware page table format

« Walk kernel mappings within a range

« Map permissions counters to each mapped
page (read, write, exec) as needed

« Pages never mapped will have no counters and
get the default read-write permissions

« Allows for sparse representation and large page
entries



Kernel features relying on dynamic memory

Dynamic L
permission update:

modification

of memory « Static call and jump label optimization
PErmissions + ftrace/livepatch

« Module loading and unloading

« Kprobes/optprobes
- eBPF JIT

Patched helpers to track permission changes:
- vmap()/vunmap() et al.
« set_memory_x()

« text_poke()




Kernel code
authentication

Requirement for secure systems, but not
implemented yet. Some leads:

 Use kernel module signatures: rely on
the guest keyring (in a secure way)

» Signed eBPF programs: nothing yet ®

- Somehow check legitimate kernel code
patching. Any idea?

This would need to be delegated to either
the VMM or a sidecar VM.



Demo: control-register pinning

(SMEP)



https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki cr-pinning.webm
https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki cr-pinning.webm

user@heki-host$




Demo: static kernel memory protections

(noexec)



https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki noexec.webm
https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki noexec.webm

user@heki-host$




Demo: dynamic kernel memory protections

(kernel module)



https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki kernel module.webm
https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki kernel module.webm

user@heki-host$ I

user@heki-host$




Current » Authentication is not in place: WIP

limitations « ROP protection is out of scope: need to
rely on CFlI

« Overhead during init: WIP to improve
the design

« Should permissions counters be in the
guest?




Future work Securely handle dynamic code execution
allowed by an external entity doing the
code authentication:

« The VMM, or

A dedicated sidecar VM (cf. VBS's VTL, or
COCONUT Secure VM Service Module)

Figure out how to verify intrinsic features
like ftrace and Kprobes.



https://kvm-forum.qemu.org/2023/talk/TK7YGD/

Going mainline What should be the next step?

Proposal: stabilize and merge the CR-

pinning patches, bringing the foundation
for memory protections




Heki is a defense-in-depth mechanism
leveraging hardware virtualization.

The Linux RFC defines a common API layer
across hypervisors (e.g., Hyper-V): see
tomorrow's talk about LVBS (Refereed
Track)



https://lpc.events/event/17/contributions/1515/

Test and We're looking for contributions!
contribute!

« New hypervisors support
« New architecture support
 Improved guest kernels support

« VMM enhancements

https://github.com/heki-linux



https://github.com/heki-linux

	Introduction
	Slide 1: Hypervisor-Enforced Kernel Integrity for Linux, powered by KVM – RFC v2
	Slide 2: Protect Linux users against kernel exploits
	Slide 3: Kernel integrity
	Slide 4: Problem

	Overview
	Slide 5: Overview
	Slide 6: Main threat model
	Slide 7: Extended threat model
	Slide 8: Leverage virtualization
	Slide 9: State of the art
	Slide 10: Design
	Slide 11: Chain of trust
	Slide 12: Security policies 
	Slide 13: VM lifetime in a nutshell
	Slide 14: RFC’s main changes

	KVM
	Slide 15: KVM implementation
	Slide 16: CR-pinning hypercall
	Slide 17: Memory permissions
	Slide 18: Memory protection hypercall
	Slide 19: Executable permission(s)
	Slide 20: Kernel memory permissions without MBEC
	Slide 21: Kernel memory permissions with MBEC

	Guest
	Slide 22: Guest kernel API and implementation
	Slide 23: Guest API
	Slide 24: Memory table and address space walker
	Slide 25: Dynamic modification of memory permissions
	Slide 26: Kernel code authentication

	Demos
	Slide 27: Demo: control-register pinning (SMEP)
	Slide 28
	Slide 29: Demo: static kernel memory protections (noexec)
	Slide 30
	Slide 31: Demo: dynamic kernel memory protections (kernel module)
	Slide 32

	Conclusion
	Slide 33: Current limitations
	Slide 34: Future work
	Slide 35: Going mainline
	Slide 36: Wrap up
	Slide 37: Test and contribute!


