
Hypervisor-Enforced Kernel Integrity for Linux, 

powered by KVM – RFC v2

2023-11-14

Linux Plumbers Conference

Mickaël Salaün & Madhavan Venkataraman

https://lpc.events/event/17/contributions/1486/
https://digikod.net/


Protect Linux users against 

kernel exploits

Attackers can leverage security vulnerabilities 

using kernel exploits to get access to all 

users’ data.



Kernel integrity
Security property guaranteeing critical parts 

of a virtualized Linux kernel to not be 

tampered by malicious code or data.



Problem

One kernel vulnerability is enough to 

bypass kernel integrity.

300+ Linux CVEs in 2022

including 8 code executions

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2022/opec-1/Linux-Linux-Kernel.html


Overview



Main threat 

model

Trust can diminish over time

The attacker has arbitrary read and write 

access to the guest kernel e.g., thanks to 

exploited vulnerability by malicious

• User space process

• Network packet

• Block device

E.g., DirtyCOW (CVE-2016-5195)



Extended 

threat model

We’d like to not trust (too much) the host 

(VMM)

pKVM should be kept in mind, along with 

confidential computing



Leverage 

virtualization

The main issue with kernel self-protection 

is that it is a self-protection.

We’d like to rely on a higher privileged 

component: the hypervisor



State of the art • grsecurity/PaX, OpenBSD

• Windows’s Virtualization Based Security 

(i.e., VBS, HVCI, HyperGuard…)

• Samsung RKP, Huawei Hypervisor 

Execution Environment

• iOS KPP/Watchtower and KTRR/RoRgn

• …and a lot of PoC



Design Properties:

• The guest VM configures itself

• The hypervisor manages enforcements

• The VMM protects its resources and get 

attack signals

Usability:

• Users manage their own kernels

• This feature needs to be simple to use 

and standalone: almost no configuration



Chain of trust

Firmware

Bootloader

Host kernel

VMM

hypervisor

Guest kernel

Guest applications

At boot, 

protected by 

secure boot

At runtime, 

protected by 

hypervisor

At runtime, 

protected by 

guest kernel

Boot steps



Security policies Improve Linux kernel hardening:

• Enforce critical CPU register pining: CR0.WP, 

CR4.SMEP…

• Enforce read-only and non-executable kernel 

data (e.g., syscall table, certificates, keys, 

security configuration)



VM lifetime in 

a nutshell

VMM:

• Assign memory pages to a new VM

• Run the VM

• Handle VM exits (e.g., emulation)

VM boot time:

• Map memory pages with permissions

• After some variable updates, set them read-only

VM run time:

• Load kernel modules or eBPF programs, use 

ftrace or kprobes…



RFC’s main 

changes

From RFC v1 to RFC v2:

• From static to dynamic memory 
permissions thanks to a new memory 
table: kernel modules, eBPF…

• No more enforced execute XOR write for 
now, we’ll get back on that later

• Leveraging the new per-page attributes 
patch series

• New KVM interface: 2 new types of VM 
exits and related capabilities

• New hypercall flag to get supported 
features

https://lore.kernel.org/all/20230505152046.6575-1-mic@digikod.net/
https://lore.kernel.org/all/20231113022326.24388-1-mic@digikod.net/


KVM implementation



CR-pinning 

hypercall

Enforce a bitmask on control registers to 

guard against locked features (e.g. SMEP)

kvm_hypercall3(KVM_HC_LOCK_CR_UPDATE,

0, // control register

X86_CR0_WP, // flag to pin

flags); // options

Can create a VM exit on configuration or 

policy violation for the VMM to be able to

do something.

Generate a GP fault on policy violation.



Memory 

permissions

Part of hardware virtualization, the Second 

Layer Address Translation or Two 

Dimensional Paging:

• Intel’s EPT

• AMD’s RVI/NPT

Enable to manage VM memory, and add a 

second complementary layer of 

permissions, only controlled by the 

hypervisor.



Memory 

protection 

hypercall

Configure (a subset of) EPT permissions.

kvm_hypercall1(KVM_HC_PROTECT_MEMORY,

pa); // address of a pagelist

The pagelist atomically maps a set of 

memory ranges with read, write and 

execute permissions.

Generate a synthetic page fault on policy 

violation.



Executable 

permission(s)

Issue: efficiently enforce restriction on 

kernel executable pages without 

impacting access to user space pages

Solution: leverage Intel’s Mode Based 

Execution Control (MBEC)

Split the execution permission into:

• Kernel mode execution

• User mode execution



Kernel memory 

permissions 

without MBEC

read-execute

read-only

read-execute

read-only

_text

_etext

___start_rodata

vdso_start

vdso_end

___end_rodata

0x0000…

0xFFFF…

executable

executable

executable



Kernel memory 

permissions 

with MBEC

read-execute

read-only

_text

_etext

___start_rodata

vdso_start

vdso_end

___end_rodata

0x0000…

0xFFFF…

non-executable

non-executable

non-executable



Guest kernel API and implementation



Guest API Normalized common layer that can be 

used by any hypervisor to receive guest 

requests:

• Map kernel memory pages with required 

permissions or attributes

• Hide hypervisor implementation details 

(e.g., hypercalls)

• Shared test suites



Memory table 

and address 

space walker

Objective: enforce the union of permissions for 

a physical page across multiple mappings.

Solution:

• Generic memory page table to reflect the 

hardware page table format

• Walk kernel mappings within a range

• Map permissions counters to each mapped 

page (read, write, exec) as needed

• Pages never mapped will have no counters and 

get the default read-write permissions

• Allows for sparse representation and large page 

entries



Dynamic 

modification 

of memory 

permissions

Kernel features relying on dynamic memory 

permission update:

• Module loading and unloading

• Static call and jump label optimization

• ftrace/livepatch

• Kprobes/optprobes

• eBPF JIT

Patched helpers to track permission changes:

• vmap()/vunmap() et al.

• set_memory_x()

• text_poke()



Kernel code 

authentication

Requirement for secure systems, but not 

implemented yet. Some leads:

• Use kernel module signatures: rely on 

the guest keyring (in a secure way)

• Signed eBPF programs: nothing yet 

• Somehow check legitimate kernel code 

patching. Any idea?

This would need to be delegated to either 

the VMM or a sidecar VM.



Demo: control-register pinning
(SMEP)

https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki cr-pinning.webm
https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki cr-pinning.webm




Demo: static kernel memory protections
(noexec)

https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki noexec.webm
https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki noexec.webm




Demo: dynamic kernel memory protections 
(kernel module)

https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki kernel module.webm
https://github.com/heki-linux/.github/raw/main/talks/2023-11-14 demo Heki kernel module.webm




Current 

limitations

• Authentication is not in place: WIP

• ROP protection is out of scope: need to 

rely on CFI

• Overhead during init: WIP to improve

the design

• Should permissions counters be in the 

guest?



Future work Securely handle dynamic code execution 

allowed by an external entity doing the 

code authentication:

• The VMM, or

• A dedicated sidecar VM (cf. VBS’s VTL, or 

COCONUT Secure VM Service Module)

Figure out how to verify intrinsic features 

like ftrace and Kprobes.

https://kvm-forum.qemu.org/2023/talk/TK7YGD/


Going mainline What should be the next step?

Proposal: stabilize and merge the CR-

pinning patches, bringing the foundation 

for memory protections



Wrap up Heki is a defense-in-depth mechanism 

leveraging hardware virtualization.

The Linux RFC defines a common API layer 

across hypervisors (e.g., Hyper-V): see 

tomorrow’s talk about LVBS (Refereed 

Track)

https://lpc.events/event/17/contributions/1515/


Test and 

contribute!

We’re looking for contributions!

• New hypervisors support

• New architecture support

• Improved guest kernels support

• VMM enhancements

https://github.com/heki-linux

https://github.com/heki-linux

	Introduction
	Slide 1: Hypervisor-Enforced Kernel Integrity for Linux, powered by KVM – RFC v2
	Slide 2: Protect Linux users against kernel exploits
	Slide 3: Kernel integrity
	Slide 4: Problem

	Overview
	Slide 5: Overview
	Slide 6: Main threat model
	Slide 7: Extended threat model
	Slide 8: Leverage virtualization
	Slide 9: State of the art
	Slide 10: Design
	Slide 11: Chain of trust
	Slide 12: Security policies 
	Slide 13: VM lifetime in a nutshell
	Slide 14: RFC’s main changes

	KVM
	Slide 15: KVM implementation
	Slide 16: CR-pinning hypercall
	Slide 17: Memory permissions
	Slide 18: Memory protection hypercall
	Slide 19: Executable permission(s)
	Slide 20: Kernel memory permissions without MBEC
	Slide 21: Kernel memory permissions with MBEC

	Guest
	Slide 22: Guest kernel API and implementation
	Slide 23: Guest API
	Slide 24: Memory table and address space walker
	Slide 25: Dynamic modification of memory permissions
	Slide 26: Kernel code authentication

	Demos
	Slide 27: Demo: control-register pinning (SMEP)
	Slide 28
	Slide 29: Demo: static kernel memory protections (noexec)
	Slide 30
	Slide 31: Demo: dynamic kernel memory protections (kernel module)
	Slide 32

	Conclusion
	Slide 33: Current limitations
	Slide 34: Future work
	Slide 35: Going mainline
	Slide 36: Wrap up
	Slide 37: Test and contribute!


