
James Gowans (AWS EC2)
Alex Graf (AWS EC2)

Persisting guest memory 
and kernel/device state 
safely across kexec

Linux Plumbers Conference, 2023



Overview

● Live update, what we can do today

● What we can’t do today

● Possible ways to solve it

● Discussion topics!
● How should we solve this?



DAX Fs

Version A Version Bkexec

cpu

Live update today:

QEMU QEMU



            DAX Fs

Version A Version Bkexec

cpu

Device passthrough?



            DAX Fs

Version A Version Bkexec

cpu

Device passthrough?



            DAX Fs

Version A Version Bkexec

cpu

Device passthrough!



            DAX Fs

Version A Version Bkexec

cpu

Pass data (pgtables) across



● IOMMU mappings

● User space handle for "old" mappings

● BAR mappings for P2P DMA

● Prevent destructive operations



            DAX Fs

Version A Version Bkexec

cpu

KVM vCPU state
SEV-SNP

SEV-SNP: can’t serialise!



            DAX Fs

Version A Version Bkexec

KVM vCPU state
SEV-SNP

KVM vCPU state
SEV-SNP

SEV-SNP: pass reference across



… others too.

Combination of “correctness” and performance.

PCI cache

KVM “replay” state

Calibration data



Proposals
Three “classes”:

- Memory pool: alloc/free
  - Reserved memory or dynamic memory
 

 - Filesystem
  - Reserved memory or dynamic memory
 

 - Serialise/deserialise framework supporting memory carve out



Memory pool
Two RFCs from Microsoft:

Persistent memory pool
● Reserve memory via cmdline param
● Alloc/free
● Not clear how to restore after kexec?
● https://lore.kernel.org/all/169645773092.11424.7258549771090599226.stgit@skinsburskii./

PRMEM
● Dynamic growable (not reserved)
● Pass pointer across kexec 
● Supports key/value store
● https://lore.kernel.org/all/20231016233215.13090-1-madvenka@linux.microsoft.com/



Filesystem

● Filesystem on top of reserved memory: pkernfs
● Proposal from AWS (RFC coming soon…)
● Drivers able to open files and use data 
● Accessible to userspace too

● Filesystem on top of dynamic memory
● PKRAM RFC by Oracle
● Userspace only!

● https://lore.kernel.org/kexec/1682554137-13938-1-git-send-email-anthony.yznaga@oracle.com/



            
              Pkernfs

/iommu/group-1

/gmem/guest-1

/state/guest-1

Version A Version Bkexec

Pkernfs:



Serialise/deserialse
Kexec Handover

● Framework for drivers to hook into

● Describe state

● Preserved arbitrary memory pages.
●Complexity: carve out of allocator; fragmentation

● Additional blob pointed to by setup_data (x86) or DT (arm)

● Proposal from AWS (RFC coming soon…)

● Simialar to Xen breadcrumbs.
● http://david.woodhou.se/live-update-handover.pdf

http://david.woodhou.se/live-update-handover.pdf


Key differences
AKA: What should we do?

● Hard separation of “persisted” vs “ephemeral” memory?
 

● Solve all persistence with one solution or  multiple solutions?
● Specifically: kernel only or kernel and userspace
 

●  Callers needs to alloc_persistent()?
●  Serialise: no; pool/fs alloc: yes.



 What should the userspace handles look like?

 IOMMU, KVM state, etc etc

 Do we pass any memory or only reserved pools?

 Options on metadata formats

 Do we build an FS or metadata as base foundation?

Discussion



 Straying more into guest memory...

 Userfaultfd on file system

 Carve out chunks of VM memory and create a 
new VM out of them (Nitro Enclaves)

 Direct Map hiding

 Gmem for the file system -> No user space 
mapping

More Discussion


	Persisting guest memory and kernel/device state safely across k
	Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Proposals
	Memory pool
	Filesystem
	Slide 15
	Serialise/deserialse
	Key differences
	Slide 18
	Slide 19

