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Introduction
● What we want?

● To run time-sensitive tasks without interruption
● How can we achieve this?

● Keeping best-effort tasks in other CPUs (aka CPU Isolation)
● What is (one of the things) preventing it?

● Scheduling work on isolated cpus:

schedule_work_on(isolated_cpu)  



Use case: per-cpu caches
● This is a very efficient strategy for sharing global resources on SMP 

systems:
● Each CPU using the resource gets a per-cpu cache
● Allocation and freeing resources happen in the local cache
● When local cache is full (or empty), it accesses the global cache for expanding 

(or shrinking) the local cache.
● This reduces the occurrences of global locking 

● Used in memcg, slub, swap.

● Issue: Actively reclaiming resources from remote per-cpu caches 
requires schedule_work_on(all_online_cpus).

● An IPI is issued, interrupting the work of all online CPUs.



The generic code
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

        schedule_work_on(cpu, s->work);

}
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Getting rid of the schedule_work_on()
● Replace local_locks() with per-cpu spinlocks()

● Get local CPU’s spinlock() for each local operation
● Get remote CPU’s spinlock() for remote operation

● Instead of schedule_work_on() that cpu

● Remote operations don’t happen very often
● Contention on per-cpu spinlocks() should be very rare.

● Some work done on this, by Mel Gorman[1]:
● 01b44456a7aa7 ("mm/page_alloc: replace local_lock with normal spinlock") 



local_lock + IPI → spinlock
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

        schedule_work_on(cpu, s->work);

}

/* Hotpath: work locally */

spin_lock(s->lock);

do_local_work_on(s);

spin_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

        p = per_cpu_ptr(mystruct, cpu);

        spin_lock(p->lock)

        p->work(p);

        spin_unlock(p->lock)

}



Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention

● Getting cacheline exclusiveness 
Local CPU will mostly have that  ()’s   exclusivity, since remote 
operations don’t happen often

Invalidation will only happen after a remote operation
● Memory barriers



Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention
● Not expected, since remote operations don’t happen often

● Getting cacheline exclusiveness 
Local CPU will mostly have that ()’s  exclusivity, since remote 
operations don’t happen often

Invalidation will only happen after a remote operation
● Memory barriers

Are not supposed to be that expensive



Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention
● Not expected, since remote operations don’t happen often

● Getting cacheline exclusiveness 
● Local CPU will mostly have that per-cpu spinlock()’s cacheline 

exclusiveness already, since remote operations don’t happen often
● Invalidation will only happen after a remote operation

● Memory barriers



Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention
● Not expected, since remote operations don’t happen often
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Talk is cheap,
show me the numbers!



Two tests
● Lock – Write – Unlock 

● Simplest case, which locks a local struct for writing
● Most seen cases will lock to modify the values in the struct
● Repeated 1Mi times, total time taken

● kmalloc() test
● Modify mm/memcontrol.c to use spinlock() on stock_pcp
● Setup a cgroup with memcg
● Do 1Mi kmalloc() in that cgroup, take the total time
● Suggested by Roman Gushchin [2]



Two tests - Rules
● Get 10x the lowest average of a 100 runs, PREEMPT_RT=n

● Rules out interruptions

● Run on two CPU archs for reference
● X86_64: AMD Epyc 7601 - 2017

● ARM64: Marvell Octeon 10 (Neoverse N2) - 2023

● Collect function duration in cycles
● x86_64: rdtsc_ordered()
● ARM64: rmb() + arch_timer_read_cntpct_el0()

● Create a sysfs file to trigger the test
● Add entry to memory_files[]



Test #1: Lock – Write - Unlock
s64 min_clk = LLONG_MAX;

for (int j = 0; j < 100; j++) {

    clk = get_clock();

    for (int i = 0; i < 1024 * 1024; i++) {

        test_lock(&t->lock);

        t->protected_data = i;

        test_unlock(&t->lock);

    }

    clk = get_clock() - clk;

    if (clk < min_clk)

        min_clk = clk;

}

● Tested Locks:
● local_lock(): for reference
● spinlock()
● inlined_spinlock()
● lc_spinlock()

● Simple textbook spinlock() 
using xchg() as mechanism

● Unfair spinlock, 
● For testing the difference of 

CAS (cmpxchg) vs 
Blind CAS (xchg)
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Test #2: kmalloc() test
s64 min_clk = LLONG_MAX;

ptrs = kvmalloc(sizeof(void *) * 1024 * 1024,          
       GFP_KERNEL);

if (!ptrs)

    return -ENOMEM;

for (int j = 0; j < 100; j++) {

    clk = get_clock();

    for (int i = 0; i < 1024 * 1024; i++)

        ptrs[i] =  
              kmalloc(8, GFP_KERNEL_ACCOUNT);

    clk = get_clock() - clk;

    if (clk < min_clk)

        min_clk = clk;

}

● Tested Locks on memcg:
● local_lock(): for reference
● spinlock()
● inlined_spinlock()
● lc_spinlock()

● Simple textbook spinlock() 
using xchg() as mechanism

● Unfair spinlock, 
● For testing the difference of 

CAS (cmpxchg) vs 
Blind CAS (xchg)



Test #2: Results
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About test #1
● Just by inlining the spinlock() it saved:

● 61% of the added cost for switching to spinlocks() on 
x86_64.

● 7% of the added cost on ARM64.

● By using xchg (blind CAS) instead of cmpxchg (CAS) on 
lc_spinlock() it saved:

● Extra 7% of the added cost of switching to spinlocks() on 
x86_64. 

● Extra 37% of the added cost on ARM64



Now on test #2
● Just by inlining the spinlock() it saved:

● 95% of the added cost for switching to spinlocks() on 
x86_64.

● 46% of the added cost on ARM64.

● The blind CAS on lc_spinlock() actually performed 
worse than inlined_spinlocks() in both archs.



Conclusion
● inlined_spinlock() would be the best replacement for 

local_lock trying to improve CPU Isolation
● Both tests showed that switching from local_lock() to 

inlined_spinlock() is not too expensive: 
● Ranges from 4 to 14 extra cycles per lock & unlock.

● This is true taking into account there are very few 
remote-CPU operations, meaning:

● Most locks() are happening on a local, exclusive cacheline
● There is not a relevant amount of contention happening



Wait!
PREEMPT_RT already turns local_lock() 

into spinlock()



Yeah, that’s correct!
● Good! It means that there is already a success case in 

the local_lock() → spinlock() replacement :)
● But CPU Isolation is a feature that does not depend on 

PREEMPT_RT. 
● Would it be ok to have a CPU Isolation improvement that 

only gets enabled when PREEMPT_RT is enabled?
● If so, there is a solution that:

● Costs nothing
● Improves CPU Isolation
● Saves time during remote-CPU requests!



The other way
● If PREEMPT_RT already turns local_lock() into spinlock(), 

why it still requires a schedule_work_on(isolated_cpu) 
when accessing a remote per-CPU cache?

● Couldn’t it just grab that remote per-CPU spinlock(), do the 
required work on the per-CPU struct, and then release it?

● It already gets the cacheline exclusiveness when scheduling 
the work on that CPU, so that cost is already paid.

● schedule_work_on(isolated_cpu) would only be required if 
there is any change that needs to be done in hardware, like 
changing a control register, or flushing hardware cache.



The other way : Proposal
● A previous patchset [3] proposes new helpers for 

local_lock() family (WIP, struggling with a better naming):
● local_lock_n(s, cpu) / local_unlock_n(s, cpu): 

● PREEMPT_RT=n : Grab/release current CPU’s local_lock()
● PREEMPT_RT=y : Grab/release percpu spinlock() for that cpu

● local_schedule_work_on(work, cpu)
● PREEMPT_RT=n: calls schedule_work_on(work, cpu) as expected.
● PREEMPT_RT=y: grabs that cpu’s spinlock(), does the required 

work, then releases the spinlock()
● local_flush_work(work) : Same idea, no-op in PREEMPT_RT=y



The other way : Example
void may_be_ran_remotely(int cpu) {

    local_lock_n(s, cpu);

    do_work();

    local_unlock_n(s, cpu);

}

void wont_be_ran_remotely() {

    local_lock(s);

    do_work_2();

    local_unlock(s);

}

void require_remote_work() {

INIT_WORK(work, may_be_ran_remotely);

    

for_each_online_cpu(cpu)

        local_queue_work_on(cpu, wq, work);

/* Optional */

    for_each_online_cpu(cpu)

        local_flush_work(work);

}



Thanks!

Questions?
Suggestions?
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