
Improving CPU Isolation
with per-cpu spinlocks:
performance cost and
analysis
Leonardo Brás Soares Passos
Linux Plumbers Conference 2023

whoami
● Leonardo Brás Soares Passos
● Work @ Red Hat (Virt-team)

● Linux Kernel
● Improving CPU Isolation & RT
● Improving RISC-V arch code (as a side quest)

● QEMU
● Improving Live Migration

● Find me: leobras @ {redhat.com, GitLab, GitHub, IRC}

Introduction
● What we want?

● To run time-sensitive tasks without interruption
● How can we achieve this?

● Keeping best-effort tasks in other CPUs (aka CPU Isolation)
● What is (one of the things) preventing it?

● Scheduling work on isolated cpus:

schedule_work_on(isolated_cpu)

Use case: per-cpu caches
● This is a very efficient strategy for sharing global resources on SMP

systems:
● Each CPU using the resource gets a per-cpu cache
● Allocation and freeing resources happen in the local cache
● When local cache is full (or empty), it accesses the global cache for expanding

(or shrinking) the local cache.
● This reduces the occurrences of global locking

● Used in memcg, slub, swap.

● Issue: Actively reclaiming resources from remote per-cpu caches
requires schedule_work_on(all_online_cpus).

● An IPI is issued, interrupting the work of all online CPUs.

The generic code
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 schedule_work_on(cpu, s->work);

}

The generic code
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 schedule_work_on(cpu, s->work);

}

Generates
an IPI for a
remote CPU

The generic code
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 schedule_work_on(cpu, s->work);

}

Generates
an IPI for a
remote CPU

Bad for CPU Isolation

Getting rid of the schedule_work_on()
● Replace local_locks() with per-cpu spinlocks()

● Get local CPU’s spinlock() for each local operation
● Get remote CPU’s spinlock() for remote operation

● Instead of schedule_work_on() that cpu

● Remote operations don’t happen very often
● Contention on per-cpu spinlocks() should be very rare.

● Some work done on this, by Mel Gorman[1]:
● 01b44456a7aa7 ("mm/page_alloc: replace local_lock with normal spinlock")

local_lock + IPI → spinlock
/* Hotpath: work locally */

local_lock(s->lock);

do_local_work_on(s);

local_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 schedule_work_on(cpu, s->work);

}

/* Hotpath: work locally */

spin_lock(s->lock);

do_local_work_on(s);

spin_unlock(s->lock);

/* Eventually do remote work */

for_each_online_cpu(cpu){

 p = per_cpu_ptr(mystruct, cpu);

 spin_lock(p->lock)

 p->work(p);

 spin_unlock(p->lock)

}

Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention

● Getting cacheline exclusiveness
Local CPU will mostly have that ()’s exclusivity, since remote
operations don’t happen often

Invalidation will only happen after a remote operation
● Memory barriers

Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention
● Not expected, since remote operations don’t happen often

● Getting cacheline exclusiveness
Local CPU will mostly have that ()’s exclusivity, since remote
operations don’t happen often

Invalidation will only happen after a remote operation
● Memory barriers

Are not supposed to be that expensive

Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention
● Not expected, since remote operations don’t happen often

● Getting cacheline exclusiveness
● Local CPU will mostly have that per-cpu spinlock()’s cacheline

exclusiveness already, since remote operations don’t happen often
● Invalidation will only happen after a remote operation

● Memory barriers

Wait, are not spinlock() expensive?
● Most of a spinlock()’s cost comes from:

● Contention
● Not expected, since remote operations don’t happen often

● Getting cacheline exclusiveness
● Local CPU will mostly have that per-cpu spinlock()’s cacheline

exclusiveness already, since remote operations don’t happen often
● Invalidation will only happen after a remote operation

● Memory barriers
● Are not supposed to be that expensive

Talk is cheap,
show me the numbers!

Two tests
● Lock – Write – Unlock

● Simplest case, which locks a local struct for writing
● Most seen cases will lock to modify the values in the struct
● Repeated 1Mi times, total time taken

● kmalloc() test
● Modify mm/memcontrol.c to use spinlock() on stock_pcp
● Setup a cgroup with memcg
● Do 1Mi kmalloc() in that cgroup, take the total time
● Suggested by Roman Gushchin [2]

Two tests - Rules
● Get 10x the lowest average of a 100 runs, PREEMPT_RT=n

● Rules out interruptions

● Run on two CPU archs for reference
● X86_64: AMD Epyc 7601 - 2017

● ARM64: Marvell Octeon 10 (Neoverse N2) - 2023

● Collect function duration in cycles
● x86_64: rdtsc_ordered()
● ARM64: rmb() + arch_timer_read_cntpct_el0()

● Create a sysfs file to trigger the test
● Add entry to memory_files[]

Test #1: Lock – Write - Unlock
s64 min_clk = LLONG_MAX;

for (int j = 0; j < 100; j++) {

 clk = get_clock();

 for (int i = 0; i < 1024 * 1024; i++) {

 test_lock(&t->lock);

 t->protected_data = i;

 test_unlock(&t->lock);

 }

 clk = get_clock() - clk;

 if (clk < min_clk)

 min_clk = clk;

}

● Tested Locks:
● local_lock(): for reference
● spinlock()
● inlined_spinlock()
● lc_spinlock()

● Simple textbook spinlock()
using xchg() as mechanism

● Unfair spinlock,
● For testing the difference of

CAS (cmpxchg) vs
Blind CAS (xchg)

Test #1: Results

x86_64 ARM64
0

5

10

15

20

25

30

35

40

Extra cycles vs local_lock()

spinlock()

inlined_spinlock()

lc_spinlock()

C
yc

le
s

Test #2: kmalloc() test
s64 min_clk = LLONG_MAX;

ptrs = kvmalloc(sizeof(void *) * 1024 * 1024,
 GFP_KERNEL);

if (!ptrs)

 return -ENOMEM;

for (int j = 0; j < 100; j++) {

 clk = get_clock();

 for (int i = 0; i < 1024 * 1024; i++)

 ptrs[i] =
 kmalloc(8, GFP_KERNEL_ACCOUNT);

 clk = get_clock() - clk;

 if (clk < min_clk)

 min_clk = clk;

}

● Tested Locks on memcg:
● local_lock(): for reference
● spinlock()
● inlined_spinlock()
● lc_spinlock()

● Simple textbook spinlock()
using xchg() as mechanism

● Unfair spinlock,
● For testing the difference of

CAS (cmpxchg) vs
Blind CAS (xchg)

Test #2: Results

x86_64 ARM64
0

10

20

30

40

50

60

70

80

90

100

Extra cycles vs local_lock()

spinlock()

inlined_spinlock()

lc spinlock()

C
yc

le
s

x86_64 ARM64
0

5

10

15

20

25

30

35

Percentage of extra cycles vs local_lock()

spinlock()

inlined_spinlock()

lc_spinlock()

%
 c

yc
le

s

About test #1
● Just by inlining the spinlock() it saved:

● 61% of the added cost for switching to spinlocks() on
x86_64.

● 7% of the added cost on ARM64.

● By using xchg (blind CAS) instead of cmpxchg (CAS) on
lc_spinlock() it saved:

● Extra 7% of the added cost of switching to spinlocks() on
x86_64.

● Extra 37% of the added cost on ARM64

Now on test #2
● Just by inlining the spinlock() it saved:

● 95% of the added cost for switching to spinlocks() on
x86_64.

● 46% of the added cost on ARM64.

● The blind CAS on lc_spinlock() actually performed
worse than inlined_spinlocks() in both archs.

Conclusion
● inlined_spinlock() would be the best replacement for

local_lock trying to improve CPU Isolation
● Both tests showed that switching from local_lock() to

inlined_spinlock() is not too expensive:
● Ranges from 4 to 14 extra cycles per lock & unlock.

● This is true taking into account there are very few
remote-CPU operations, meaning:

● Most locks() are happening on a local, exclusive cacheline
● There is not a relevant amount of contention happening

Wait!
PREEMPT_RT already turns local_lock()

into spinlock()

Yeah, that’s correct!
● Good! It means that there is already a success case in

the local_lock() → spinlock() replacement :)
● But CPU Isolation is a feature that does not depend on

PREEMPT_RT.
● Would it be ok to have a CPU Isolation improvement that

only gets enabled when PREEMPT_RT is enabled?
● If so, there is a solution that:

● Costs nothing
● Improves CPU Isolation
● Saves time during remote-CPU requests!

The other way
● If PREEMPT_RT already turns local_lock() into spinlock(),

why it still requires a schedule_work_on(isolated_cpu)
when accessing a remote per-CPU cache?

● Couldn’t it just grab that remote per-CPU spinlock(), do the
required work on the per-CPU struct, and then release it?

● It already gets the cacheline exclusiveness when scheduling
the work on that CPU, so that cost is already paid.

● schedule_work_on(isolated_cpu) would only be required if
there is any change that needs to be done in hardware, like
changing a control register, or flushing hardware cache.

The other way : Proposal
● A previous patchset [3] proposes new helpers for

local_lock() family (WIP, struggling with a better naming):
● local_lock_n(s, cpu) / local_unlock_n(s, cpu):

● PREEMPT_RT=n : Grab/release current CPU’s local_lock()
● PREEMPT_RT=y : Grab/release percpu spinlock() for that cpu

● local_schedule_work_on(work, cpu)
● PREEMPT_RT=n: calls schedule_work_on(work, cpu) as expected.
● PREEMPT_RT=y: grabs that cpu’s spinlock(), does the required

work, then releases the spinlock()
● local_flush_work(work) : Same idea, no-op in PREEMPT_RT=y

The other way : Example
void may_be_ran_remotely(int cpu) {

 local_lock_n(s, cpu);

 do_work();

 local_unlock_n(s, cpu);

}

void wont_be_ran_remotely() {

 local_lock(s);

 do_work_2();

 local_unlock(s);

}

void require_remote_work() {

INIT_WORK(work, may_be_ran_remotely);

for_each_online_cpu(cpu)

 local_queue_work_on(cpu, wq, work);

/* Optional */

 for_each_online_cpu(cpu)

 local_flush_work(work);

}

Thanks!

Questions?
Suggestions?

References:
[1] https://lore.kernel.org/all/20220624125423.6126-8-mgorman@techsingularity.net/
[2] https://lore.kernel.org/all/Y+P2xp5BfmGh5Fin@P9FQF9L96D.corp.robot.car/
[3] https://lore.kernel.org/all/20230729083737.38699-2-leobras@redhat.com/

https://lore.kernel.org/all/Y+P2xp5BfmGh5Fin@P9FQF9L96D.corp.robot.car/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

