

# Proxy Execution

Reducing Complexity and Finding a Path to Upstream

John Stultz < jstultz@google.com >



#### Previous Talks/Papers

- Watkins, Straub, Niehaus (RTLWS11)
- Peter Zijlstra (<u>RTSumit17</u>)
- Juri Lelli (2018 patchset, OSPM19)
- Valentin Schneider (<u>LPC20 slides</u>)
- Me (w/ special thanks to Connor O'Brien) (OSPM23)

#### Why do we care?

- Enforce priority between Foreground/Background tasks
- Classic solutions: RealTime Priority -> Priority Inversion -> Priority Inheritance
- Android apps can't generally use RT priorities safely
- Instead mix of cgroups and nice values used to prioritize Foreground apps
- Hit lots of priority inversion issues! not unbounded, but longer then we like
- Priority Inheritance doesn't work for SCHED\_OTHER
- As a result, we cannot usefully limit background activity without introducing inconsistent behavior

#### **Quick Background**

Proxy Execution

Recent Work

Current Issues



#### Proxy Execution

#### Simple Idea:

- Track blocked\_on relationship of mutex waiters to owners
- Keep mutex blocked tasks on runqueue!
- Treat the scheduler like a black box: It selects the most important task to run.
- If we select a mutex blocked task to run, follow the blocked\_on chain and run the unblocked owner

#### But it gets complex:

- blocked\_on chains can cross CPUs run-queues
  - -> Migrate blocked task to the runnable owner's CPU
- Chains might resolve to sleeping owners that can't run.
  - -> Enqueue blocked task on sleeping owner task, to wake with owner
- ... and more!

#### Quick Background

#### **Proxy Execution**

Recent Work

Current Issues



# Plumbers Conference | Richmond, VA | Nov. 13-15, 2023

**On the left**: We test how long it takes to do many file renames in a directory. We do this in two parallel tasks to create contention on fs locks. We also run NRCPU busyloop tasks.

**On the right**: We re-test with CPU share limiting so one of the file rename tasks is very limited, and set the busy loop tasks to moderate limits. Leaving one of the rename tests unlimited.

With **Vanilla kernels** the average improves slightly with share limiting. But we see bad outliers as a result of priority inversion on fs locks.

With **Proxy-Exec**, we see much more deterministic output as we avoid priority inversion.



https://github.com/johnstultz-work/priority-inversion-demo



### Recent Work (Since OSPM - April)

#### • v4: Attempt to resolve ww\_mutex circular blocked\_on references

- However, still ran into rq confusion crashes (more on this)
- Minimal feedback

#### • v5: Tearing the patch apart into fine grained bisectable steps

- Lots of rework and fixes!
- Return-migration rework lock ordering trouble
- Missing 2 parts from v4: chain migration, and sleeping owner enqueuing
- Introduced performance regression : (
- Minimal feedback

#### • v6: Stabilizing sleeping owner enqueueing

- Focus on trying to fix sleeping owner enqueueing
- Conditionalized logic on a boot flag
- A few fixes for problems I introduced in v5's rework
- Reduced performance regression vs v4
- Cleanups and fixes from feedback

Quick Background

Proxy Execution

**Recent Work** 

Current Issues



#### Current Issues (Summary)

- Sleeping owner enqueuing is difficult to get right
  - List/chains of tasks on a task (are we recreating runqueues?)
  - Mid-chain wakeups (from ww\_mutexes)
- Return migration approach from \_schedule()
  - Slow but correct
  - Need thoughts on how to avoid locking mess
- Sorting out perf regression since v4
- Limitations with cross-runqueue chains
  - O How to allow for better optimizations?
- Scheduler is already terribly subtle, adding more complexity is a concern

Quick Background

Proxy Execution

Recent Work

**Current Issues** 



#### Discussion

- Practical questions:
  - O How fine grained do folks want patches?
  - O Do we need to ship it first?
    - Want to avoid more Android divergence.
- Design questions:
  - Ways to minimizing lock juggling:
    - Keep having the right types of locks, but for the wrong objects
  - Thoughts for avoiding "swimming upstream" of the locking-order?
- A request: Reviews for Design & Correctness
  - https://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/

Quick Background

Proxy Execution

Recent Work

Current Issues



# Thank You!

John Stultz < jstultz@google.com >



# Current/Recent Issues (backup slides)

# Sleeping Owner Enqueuing Troubles







Quick Background

Proxy Execution

Recent Work

**Current Issues** 





Quick Background

Proxy Execution

Recent Work

**Current Issues** 



Prior to v4, the mistake here was not clearing the blocked\_on state, causing the task to not be runnable, thus unable to receive the EDEADLK and release locks



Quick Background

Proxy Execution

Recent Work

**Current Issues** 









Quick Background

Proxy Execution

Recent Work

**Current Issues** 



Proxy Execution

**Current Issues** 

Recent Work

Discussion

# Sleeping Owner Enqueueing





Proxy Execution

**Current Issues** 

Recent Work

Discussion

### Sleeping Owner Enqueueing (cont)





Proxy Execution

**Current Issues** 

Recent Work

Discussion





#### Sleeping Owner Midchain Wakeups



Quick Background

Proxy Execution

Recent Work

**Current Issues** 

Discussion

CPU 2 Runqueue



#### Sleeping Owner Midchain Wwakeups



Quick Background

Proxy Execution

Recent Work

**Current Issues** 

Discussion

CPU 2 Runqueue



#### Sleeping Owner Midchain Wakeups



Quick Background

Proxy Execution

Recent Work

**Current Issues** 

Discussion

CPU 2 Runqueue

# But There's a Race



Proxy Execution

**Current Issues** 

Recent Work

Discussion





#### Complications

- Lock order: task.pi\_lock -> rq.lock -> mutex.wait\_lock -> task.blocked\_lock
- From ww\_mutex\_wound() we call try\_to\_wake\_up(), and hold task.pi\_lock
- From activate\_task() where we'd activate blocked\_entities, we're already holding the owner's pi\_lock & local rq lock.
  - Have to drop and pick up other locks in the middle of things
- With 100s of blocked entities, dropping and taking all the locks to activate them all can take time.
  - o In the meantime, the owning task might migrate to other cpus
  - Might go to sleep
  - Might add new blocked entities!

Quick Background

Proxy Execution

Recent Work

**Current Issues** 

# Proxy & Return Migration Locking





Quick Background

Proxy Execution

Recent Work

**Current Issues** 





Quick Background

Proxy Execution

Recent Work

**Current Issues** 





Quick Background

Proxy Execution

Recent Work

**Current Issues** 



Proxy Execution

**Current Issues** 

Recent Work

Discussion

# Proxy migration



# But Task1 might not be able to run on CPU2!





Quick Background

Proxy Execution

Recent Work

**Current Issues** 



CPU 1 Runqueue

Hext

Quick Background
Proxy Execution

Recent Work

**Current Issues** 







Quick Background

Proxy Execution

Recent Work

**Current Issues** 





Quick Background

Proxy Execution

Recent Work

**Current Issues** 







#### Complications

- In v4 and earlier, we cleared the blocked\_on state in try\_to\_wakeup() called from mutex\_unlock\_slowpath() on from lock handoff
  - This would deactivate the task, set\_task\_cpu() back to a runnable cpu
     and activate it.
  - But multiple migrations can happen, so its possible we hand the lock off
     & clear the blocked\_on relationship while waiter was on a different cpu
  - This makes it immediately runnable, possibly on a cpu it can not run on!

Quick Background

Proxy Execution

Recent Work

**Current Issues** 



#### Complications

- In v5 I moved this racy return migration logic out of try\_to\_wakeup() and into \_schedule(). When we have selected a task to run, we double check its runnable on the current cpu, and if not migrate it back.
  - Problem: In \_\_schedule() we hold the \*current cpu\* rq lock
  - We need task->pi\_lock to set\_task\_cpu() and we also need rq lock for destination cpu.
  - o unlock current cpu rqlock, take task->pi lock, take current cpu rqlock, deactivate task, set\_task\_cpu(), drop current cpu rqlock, take dest rqlock activate task, drop dest rqlock, take current cpu rqlock, drop task->pi lock.
  - Terrible amount of lock juggling!

Quick Background

Proxy Execution

Recent Work

**Current Issues** 

