
Proxy Execution
Reducing Complexity and Finding a Path to Upstream

John Stultz <jstultz@google.com>

mailto:jstultz@google.com

Quick Background

Previous Talks/Papers
● Watkins, Straub, Niehaus (RTLWS11)
● Peter Zijlstra (RTSumit17)
● Juri Lelli (2018 patchset, OSPM19)
● Valentin Schneider (LPC20 slides)
● Me (w/ special thanks to Connor O’Brien) (OSPM23)

Why do we care?
● Enforce priority between Foreground/Background tasks
● Classic solutions: RealTime Priority -> Priority Inversion -> Priority Inheritance
● Android apps can’t generally use RT priorities safely
● Instead mix of cgroups and nice values used to prioritize Foreground apps
● Hit lots of priority inversion issues! - not unbounded, but longer then we like
● Priority Inheritance doesn’t work for SCHED_OTHER
● As a result, we cannot usefully limit background activity without introducing

inconsistent behavior

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

https://static.lwn.net/images/conf/rtlws11/papers/proc/p38.pdf
https://www.youtube.com/watch?v=9daCKeVmI5Y&list=PLbzoR-pLrL6r4xoc1PmRiYh2-qraTilVu
https://lore.kernel.org/lkml/20181009092434.26221-1-juri.lelli@redhat.com/
https://www.youtube.com/watch?v=mlu9pC5IL2g
https://lpc.events/event/7/contributions/758/attachments/585/1036/lpc20-proxy.pdf
https://www.youtube.com/watch?v=QEWqRhVS3lI&list=PL0fKordpLTjKsBOUcZqnzlHShri4YBL1H&index=13

Proxy Execution

Simple Idea:
● Track blocked_on relationship of mutex waiters to owners
● Keep mutex blocked tasks on runqueue!
● Treat the scheduler like a black box: It selects the most important task to run.
● If we select a mutex blocked task to run, follow the blocked_on chain and run

the unblocked owner

But it gets complex:
● blocked_on chains can cross CPUs run-queues

○ -> Migrate blocked task to the runnable owner’s CPU
● Chains might resolve to sleeping owners that can’t run.

○ -> Enqueue blocked task on sleeping owner task, to wake with owner
● … and more!

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

https://github.com/johnstultz-work/priority-inversion-demo

On the left: We test how long it takes to do many file

renames in a directory. We do this in two parallel tasks to

create contention on fs locks. We also run NRCPU busyloop

tasks.

On the right: We re-test with CPU share limiting so one of the

file rename tasks is very limited, and set the busy loop tasks

to moderate limits. Leaving one of the rename tests

unlimited.

With Vanilla kernels the average improves slightly with share

limiting. But we see bad outliers as a result of priority

inversion on fs locks.

With Proxy-Exec, we see much more deterministic output

as we avoid priority inversion.

Va
ni

lla
:

Pr
ox

y-
Ex

ec
:

Bad Outliers

No Outliers

https://github.com/johnstultz-work/priority-inversion-demo

Recent Work (Since OSPM - April)

● v4: Attempt to resolve ww_mutex circular blocked_on references
○ However, still ran into rq confusion crashes (more on this)
○ Minimal feedback

● v5: Tearing the patch apart into fine grained bisectable steps
○ Lots of rework and fixes!
○ Return-migration rework - lock ordering trouble
○ Missing 2 parts from v4: chain migration, and sleeping owner enqueuing
○ Introduced performance regression :(
○ Minimal feedback

● v6: Stabilizing sleeping owner enqueueing
○ Focus on trying to fix sleeping owner enqueueing
○ Conditionalized logic on a boot flag
○ A few fixes for problems I introduced in v5’s rework
○ Reduced performance regression vs v4
○ Cleanups and fixes from feedback

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

https://lore.kernel.org/lkml/20230601055846.2349566-1-jstultz@google.com/
https://lore.kernel.org/lkml/20230819060915.3001568-1-jstultz@google.com/
https://lore.kernel.org/lkml/20231106193524.866104-1-jstultz@google.com/

Current Issues (Summary)

● Sleeping owner enqueuing is difficult to get right
○ List/chains of tasks on a task (are we recreating runqueues?)
○ Mid-chain wakeups (from ww_mutexes)

● Return migration approach from __schedule()
○ Slow but correct
○ Need thoughts on how to avoid locking mess

● Sorting out perf regression since v4

● Limitations with cross-runqueue chains
○ How to allow for better optimizations?

● Scheduler is already terribly subtle, adding more complexity is a concern

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Discussion

● Practical questions:
○ How fine grained do folks want patches?
○ Do we need to ship it first?

■ Want to avoid more Android divergence.

● Design questions:
○ Ways to minimizing lock juggling:

■ Keep having the right types of locks, but for the wrong objects
○ Thoughts for avoiding “swimming upstream” of the locking-order?

● A request: Reviews for Design & Correctness
○ https://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

https://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/

Thank You!
John Stultz <jstultz@google.com>

mailto:jstultz@google.com

Current/Recent Issues
(backup slides)

Sleeping Owner Enqueuing Troubles

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Tangent: ww_mutexes

CPU 1 Runqueue

Nex
t

Task2
(blocked)

2

Task1
(blocked)

1

Exe
c?

(blocked_on)

(blocked_on)

Exec?

?

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Tangent: ww_mutexes

CPU 1 Runqueue

Nex
t

Task2
(blocked)

2
Task1

1

(blocked_on)

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Tangent: ww_mutexes

CPU 1 Runqueue

Nex
t

Task2
(blocked)

2
Task1

1

(blocked_on)

ww_mutex_wound

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Tangent: ww_mutexes

CPU 1 Runqueue

Nex
t

Task2

2
Task1

1

EDEADLK
ww_mutex_wound

Prior to v4, the mistake here was
not clearing the blocked_on

state, causing the task to not be
runnable, thus unable to receive
the EDEADLK and release locks

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Tangent: ww_mutexes

CPU 1 Runqueue

Nex
t

Task2

2

Task1
(blocked)

1

(blocked_on)

Exec

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Tangent: ww_mutexes

CPU 1 Runqueue

Nex
t

Task2

2

Task1
(blocked)

1

(blocked_on)

Exec

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Tangent: ww_mutexes

CPU 1 Runqueue

Nex
t

Task2Task1

12

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Enqueueing

CPU 1 Runqueue

Nex
t

Task1
(blocked) Task2

Task3
(sleeping)

1

(blocked_on)

(owner)
ZZZ

CPU 1 Runqueue

Nex
t

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Enqueueing (cont)

Task1
(blocked)

Task3
(sleeping)

1

(blocked_on)

(owner)
ZZZ

(blocked_entities)

Task2

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3
(blocked)

Task4
(sleeping)

1
(blocked_on)

(owner)ZZZ

(blocked_entities)

2Task2
(blocked)

3

(blocked_entities)

(blocked_on)

Task1

Nex
t

CPU 2 Runqueue

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3
(blocked)

Task4
(sleeping)

1
(blocked_on)

(owner)ZZZ

(blocked_entities)

2Task2
(blocked)

3

(blocked_entities)

(blocked_on)

Task1

Nex
t

CPU 2 Runqueue

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3
(blocked)

Task4
(sleeping)

1
(blocked_on)

(owner)ZZZ

(blocked_entities)

2Task2
(blocked)

3

(blocked_entities)

(blocked_on)

Task1

Nex
t

CPU 2 Runqueue

ww_mutex_wound

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3

Task4
(sleeping)

1

(owner)ZZZ

(blocked_entities)

2Task2
(blocked)

3

(blocked_entities)

(blocked_on)

Task1

Nex
t

CPU 2 Runqueue

ww_mutex_wound

EDEADLK

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3

Task4
(sleeping)

1

(owner)ZZZ

2

Task2
(blocked)

3

(blocked_entities)

(blocked_on)

Task1
(blocked)

Nex
t

CPU 2 Runqueue

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3

Task4
(sleeping)

1

(owner)ZZZ

2

Task2
(blocked)

3

Task1
(blocked)

Nex
t

CPU 2 Runqueue

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wwakeups

Task3

Task4
(sleeping)

1

(owner)ZZZ

2

Task2
(blocked)

3

Task1
(blocked)

Nex
t

CPU 2 Runqueue

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3

Task4
(sleeping)

1

(owner)ZZZ

Task2
(blocked)

3

Task1

Nex
t

2

CPU 2 Runqueue

But There’s a Race

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3
(blocked)

Task4
(sleeping)

1
(blocked_on)

(owner)ZZZ

(blocked_entities)

2Task2
(blocked)

3

(blocked_entities)

(blocked_on)

Task1

Nex
t

CPU 2 Runqueue

ww_mutex_wound

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3
(blocked)

Task4

1
(blocked_on)

(owner)

(blocked_entities)

2Task2
(blocked)

3

(blocked_entities)

(blocked_on)

Task1

Nex
t

CPU 2 Runqueue

ww_mutex_wound

CPU 2 Runqueue

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task3

2Task2
(blocked)

3 (blocked_on)

Task1

Nex
t

(blocked_entities)

ww_mutex_wound

Task4

1

EDEADLK

(blocked_entities)

CPU 2 Runqueue

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Sleeping Owner Midchain Wakeups

Task2
(blocked)

3
(blocked_on)

Task1

Nex
t

(blocked_entities)

Task4

1

Task3

2

Task3

2

ww_mutex_wound/ttw
u

actv
ate_blocke

d_entitie
s

???

Complications

● Lock order: task.pi_lock -> rq.lock -> mutex.wait_lock -> task.blocked_lock

● From ww_mutex_wound() we call try_to_wake_up(), and hold task.pi_lock

● From activate_task() where we’d activate blocked_entities, we’re already

holding the owner’s pi_lock & local rq lock.

○ Have to drop and pick up other locks in the middle of things

● With 100s of blocked entities, dropping and taking all the locks to activate

them all can take time.

○ In the meantime, the owning task might migrate to other cpus

○ Might go to sleep

○ Might add new blocked entities!
Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy & Return Migration Locking

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy migration

Task1
(blocked)

Nex
t

CPU 2 Runqueue

Task3

1

Task2

Nex
t

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy migration

Nex
t

CPU 2 Runqueue

Task3

1

Task2

Nex
t

Task1
(blocked)

Exec

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy migration

Nex
t

CPU 2 Runqueue

Task3

1

Task2

Nex
t

Task1
(blocked)

Exec

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy migration

Nex
t

CPU 2 Runqueue

Task3Task2

Nex
t

Task1

Exec

1

But Task1 might not be able
to run on CPU2!

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy migration

Task1
(blocked)

Nex
t

CPU 2 Runqueue

Task3

1

Task2

Nex
t

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy migration

Nex
t

CPU 2 Runqueue

Task3

1

Task2

Nex
t

Task1
(blocked)

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy migration

Nex
t

CPU 2 Runqueue

Task3

1

Task2

Nex
t

Task1
(blocked)

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy migration

Nex
t

CPU 2 Runqueue

Task3

1

Task2

Nex
t

Task1
(blocked)

CPU 1 Runqueue

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Proxy migration

Nex
t

CPU 2 Runqueue

Task3

1

Nex
t

Task1

Task2

ZZZ

Oh No!

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Complications

● In v4 and earlier, we cleared the blocked_on state in try_to_wakeup() called

from mutex_unlock_slowpath() on from lock handoff

○ This would deactivate the task, set_task_cpu() back to a runnable cpu

and activate it.

○ But multiple migrations can happen, so its possible we hand the lock off

& clear the blocked_on relationship while waiter was on a different cpu

○ This makes it immediately runnable, possibly on a cpu it can not run on!

Quick Background

Proxy Execution

Recent Work

Current Issues

Discussion

Complications

● In v5 I moved this racy return migration logic out of try_to_wakeup() and into

__schedule(). When we have selected a task to run, we double check its

runnable on the current cpu, and if not migrate it back.

○ Problem: In __schedule() we hold the *current cpu* rq lock

○ We need task->pi_lock to set_task_cpu() and we also need rq lock for

destination cpu.

○ unlock current cpu rqlock, take task->pi lock, take current cpu rqlock,

deactivate task, set_task_cpu(), drop current cpu rqlock, take dest rqlock

activate task, drop dest rqlock, take current cpu rqlock, drop task->pi lock.

○ Terrible amount of lock juggling!

