
Userspace adaptive spinlock with rseq

André Almeida, Igalia
Mathieu Desnoyers, EfficiOS

Use case

● Calling a mutex_lock() -> futex() requires a context switch

● Context switch can be more expensive than the critical section ("microcontention")

● Some apps have a complete userspace lock implementation without syscalls to avoid this cost

● Let's allow userspace to correctly spin!

● rt_mutex uses adaptive spinlock

The challenge

● A lock contender should spin if the lock owner is running

● Or sleep otherwise

● How can we tell an userspace thread is running or not?

● In a very fast way, without syscalls

rseq

● rseq code is already integrated with task scheduler and has a fast uAPI

● No syscalls to read information set by the kernel

● In a similar fashion, rseq was reused for getcpu as well

sched_state

● A new field for struct rseq: sched_state

● Updated by the kernel when process is scheduled out and in

● Now, the only thing left for userspace is to check if a thread is on a given CPU or not.

● If it is, it can safely spin, else, it goes the normal path (sleep using futex())

rseq struct cache line

struct rseq_sched_state {
__u32 version;
__u32 state;
__u32 tid;

};

struct rseq {
[...]
 __u32 mm_cid;

__u32 padding1;
__u64 sched_state_ptr;

char end[];
}

robustness?

● This interface requires shared thread information

● Before a thread dies, it free the lock in the exit path

● Barriers around the sched_state ensure that every reader is reading something meaningful

● However, this mechanism isn’t robust for shared memory/multi process

● But we don’t even have access to other processes' thread area in the first place

● Is this a concern?

Correctness

● Scheduler cannot take a page fault, so there’s no guarantee that the sched_state is always correct

● Statistically it should work anyways, it’s an edge case

● Worse case: it gets faulted in on next return to userspace

● Workaround: hook into the page fault handler, and populate it with new data when it gets faulted

in for read

