

SBI extension:
Supervisor Software Events

Clément Léger <cleger@rivosinc.com>

● Allows injecting events to [H]S-mode from higher privilege mode
○ Similar to existing ARM SDEI (Software Delegated Exception Interface)

● Need to inject high priority (non maskable) events
○ Reliability, Availability and Serviceability errors
○ PMU overflow IRQ for performance events
○ Paravirtualized Asynchronous Page Fault

● SBI Specification submitted by Himanshu Chauhan [1]
○ https://lists.riscv.org/g/tech-prs/message/515

SSE : Why ?

https://lists.riscv.org/g/tech-prs/message/515

● [H]S-mode can register event handler to be called upon specific events
○ Events RAS, PMU, etc
○ Events can be local (per-hart) or global
○ [H]S-mode allocates memory space to store interrupted/entry context

● SBI then « injects » the SSE events upon specific hardware events
○ Divert execution flow by replacing interrupted context with SSE handler entry context
○ Then resume execution at specified entry context “pc” content.

● Upon SSE handle completion, handlers does a SBI SSE complete ecall.
○ Previously interrupted context is restored and resumed

SSE : How ?

●Almost orthogonal to OS normal operations
○ ie: no impact at all on normal operations
○ Does not use regular interrupt path

●Avoid waiting too long due to irqs off section in kernel
○ SSE can interrupt the supervisor mode at any place
○ Can be seen as an NMI

●Allows handling of RAS fault as fast as possible to avoid fault propagation
○ Critical to avoid taking “serious” action at a later time

●Does not use much OS specific resources
○ Except some memory for SSE event contexts

SSE : Supervisor OS PoV

● Events encoding uses 32 bits integer
○ Type (global/local)
○ Priority
○ Platform specific

● IDs encoded the default priority (0 is highest priority)

SSE : Priority

#define SBI_SSE_EVENT_LOCAL_RAS 0x00000000

#define SBI_SSE_EVENT_GLOBAL_RAS 0x00008000

#define SBI_SSE_EVENT_LOCAL_ASYNC_PF 0x00010000

#define SBI_SSE_EVENT_LOCAL_PMU 0x00010001

#define SBI_SSE_EVENT_LOCAL_DEBUG 0xffff3fff

#define SBI_SSE_EVENT_GLOBAL_DEBUG 0xffffbfff

#define SBI_SSE_EVENT_GLOBAL (1 << 15)

#define SBI_SSE_EVENT_PLATFORM (1 << 14)

SSE : context
struct sse_entry_state {
 /** Entry program counter */
 unsigned long pc;
 /** ra register state */
 unsigned long ra;
 /** sp register state */
 unsigned long sp;
 …
 /** t5 register state */
 unsigned long t5;
 /** t6 register state */
 unsigned long t6;
};

struct sse_interrupted_state {
 /** Interrupted program counter */
 unsigned long pc;
 /** ra register state */
 unsigned long ra;
 /** sp register state */
 unsigned long sp;
 …
 /** t5 register state */
 unsigned long t5;
 /** t6 register state */
 unsigned long t6;
 /** Exception mode */
 unsigned long exc_mode;
};

struct sbi_sse_handler_ctx {
 struct sse entry state entry;
 struct sse_interrupted_state interrupted;
};

SSE Pseudo-NMI [1]

● Pros:
○ True NMI-like events that can interrupt the kernel

at any time
○ Allows nesting of events
○ Faster delivery than standard IRQ path (TBC)
○ Minimal modification of existing codebase
○ Easily extensible (pure software)

● Pros:
○ Does no require any SBI support
○ Only a few part of interrupts handling modified
○ Simpler than SSE

● Cons:
○ Requires a SSE compatible SBI
○ Additional work to retrieve current() task struct

● Cons:
○ Critical sections (exception handling) still

uninterruptible
○ Does not support nesting nor priority
○ Performance loss for existing use cases (~1.90%)

[1] https://lore.kernel.org/linux-riscv/20231023082911.23242-1-luxu.kernel@bytedance.com/

https://lore.kernel.org/linux-riscv/20231023082911.23242-1-luxu.kernel@bytedance.com/

● With SSE, kernel can be interrupted anywhere, including during exception
handling and we need the current() task for accounting

● On RISC-V, CSR_SSCRATCH is used to store current() task
○ But also used as the temporary register to make room for temporary stack

computation (context saving) → /!\ Content is unreliable /!\
● Need a way to know exactly where is the task_struct is located based on code
addresses

○ Using address comparison (ie check kernel one) is unreliable
○ Using known labels seems a bit fixed
○ One way is to annotate source code with « fixup-like » data

SSE : Where is my task_struct ? (1)

SSE : Where is my task struct ? (2)

#define __SSE_TASK_LOC(s_loc, u_loc)
.pushsection __task_loc,"a";
RISCV_PTR 99f;
.byte TASK_LOC(s_loc, u_loc);
.popsection;
99:

SYM_CODE_START(handle_exception)
__SSE_TASK_LOC(IN_TP, IN_SSCRATCH)
csrrw tp, CSR_SCRATCH, tp

__SSE_TASK_LOC(IN_SSCRATCH, IN_TP)
bnez tp, _save_context

_restore_kernel_tpsp:
csrr tp, CSR_SCRATCH

__SSE_TASK_LOC(IN_TP, IN_TP)
REG_S sp, TASK_TI_KERNEL_SP(tp)
…

● Annotations are actually stored in a separate section and used to locate
current() task based on pc register

● Some concerns with the specification were raised
○ Creates a bond between the SBI spec and the Risc-v unprivileged ISA
○ CHERI spec in particular seems to have been reported

● Possibility to save less general purpose registers
○ But at some point we need a safe state to enter « nested » execution in kernel
○ Other registers/architectural state can be saved if needed

SSE : Specification problem (?)

● Measured within spike
○ PoC with PMU overflow IRQs in M-mode triggering local PMU SSE events

● From interrupt being set to final IRQ/SSE event handler :
○ Normal IRQ handling: ~ 1590 instructions
○ SSE event handling: ~ 790 instructions

●With SSE, no jitter due to interrupts being disabled.

●Next step: gather more precise numbers using hardware platforms
○ Measure privilege level switch impact on caches, etc.

Numbers

● Kernel (~1000 SLOC)
● https://github.com/rivosinc/linux/tree/dev/cleger/sse

● OpenSBI (~1000 SLOC)
● https://github.com/rivosinc/opensbi/tree/dev/cleger/sse

● SBI extension specification is still in review, could to be ratified ~Q3
2024 for SBI v3.0

● https://lists.riscv.org/g/tech-prs/message/515

Status

https://github.com/rivosinc/opensbi/tree/dev/cleger/sse
https://github.com/rivosinc/opensbi/tree/dev/cleger/sse
https://lists.riscv.org/g/tech-prs/message/515

