Proposal of porting Trusted Execution Environment Provisioning (TEEP) Protocol with WorldGuard on RISC-V

Akira Tsukamoto
November 13th, 2023
Objective of TEEP, SUIT, RATS

Acronyms
- Trusted Execution Environment Provisioning (TEEP)
- Software Updates for Internet of Things (SUIT)
- Remote ATtestation ProcedureS (RATS)

• **Target Audience**
 Vendors who develop products with CPU or SoC require Secure Update of software and data

• **Lifecycle Management** for Trusted Applications (Software) and Personalization data (Data)

• **Main objective** is to manage Software and data in IoT devices to have latest version
 Before updates of the Software and Personalization data in IoT, the server check the trustworthiness of the IoT devices remotely whether it is compromised or not

• **Confidential Computing usage** which technically assure the Host CPU can not read inside Guest VMs, it allows Cloud vendors provide confidentiality to customers using Guest VMs
Key features of TEEP, SUIT, RATS

• TEEP
 Responsible of managing Software and Data on IoT devices
 Check the version of Software and Data in devices, and updates them if necessary

• SUIT
 Describes Software/Data in SUIT manifest

• RATS
 Check trustworthiness of the IoT devices
 Used to verify the target IoT devices are compromised or not
Key technical features of TEEP

Acronyms
- Concise Binary Object Representation (CBOR)
- CBOR Object Signing and Encryption (COSE)

- **CBOR**
 - Next generation Binary representation format for the Internet
 - Compatibility with JSON
 - Small binary size and low overhead of encoding and decoding

- **COSE**
 - Method of Signature Verification and Encryption on CBOR

- **TEEP** was the first protocol draft to adopt CBOR and COSE
 - Suitable for constrained devices and IoT while keeping similarity of JSON

- Agnostic protocol standard to difference of CPU or hardware design
Typical Trusted App and Personalization Data

• Trusted Application (Software)
 Payment App (Credit cards)
 DRM for video streaming (NetFlix)
 Firmware update (OTA)

• Personalization Data (Data)
 Device Authentication (eSIM)
 Unlock key of hardware feature (Quick Charge for Automotive)
 Personalization ID (SSN, Japanese My Number)
Source of TEEP Protocol released in April 2023

- Using Doxygen to create the docs from sources, TA-Ref and TEEP-Device

Sources:
- https://github.com/mcd500/ta-ref
- https://github.com/mcd500/teep-device

Documentations:
- https://mcd500.github.io/teep-device_readme_html/
- https://mcd500.github.io/ta-ref_readme_html/
Docker, SBOM, CI on the source repos

- Providing Docker images for setting up development environments
- All sources have copyright notices, license statements, and SPDX identifiers, which are becoming increasingly important for the software supply chain purposes
- Providing Makefiles and build instructions
- Providing CI scripts (GitLab) that were used during development
- Providing all Git logs
Relationship of TA-Ref and TEEP-Device

- Implementation of TEEP Protocol.

- Provides a portable programming environment as an SDK with a subset of the Global Platform Internal API on all SGX (Intel), OP-TEE (ARM64), and Keystone (RISC-V).

- There are various TEE implementations such as SGX (Intel), OP-TEE (ARM64), and Keystone (RISC-V). These implementations share similar feature designs, but each has its own APIs and programming environments.
Diagrams of TEE and TEEP Protocol on RISC-V

Ex. Secure monitor

Ex. Linux

Verter

TAM

TEEP-Agent

TEEP-Broker

TEEP-Device

TA-Ref

OS

Firmware (Secure Monitor/UEFI)

CPU/HW

Secure World

Host Application

Trusted Application

TEE API / lib

TEE C API / lib

Platform

REE OS

TEE OS

TA

Verifier

OS

Firmware (Secure Monitor/UEFI)

CPU/HW
Now has a wiki page for TEEP Protocol

TEEP, SUIT, RATS in one chart

- Responsible areas in colors

Verifier verifies the trustworthiness of Hardware/Firmware of devices

Trusted Application Manager (TAM) maintains Software/Data in the devices
Software/Data are in SUIT manifest

Devices provide installed Software/Data information to TAM
and receive updates if necessary
Devices provide integrity information of Hardware/Firmware in Evidence format (RATS) to Verifier
Operation of TEEP, SUIT, RATS

• Responsible area in colors

①② TAM request Device information, Currently installed Soft/Data, supported PKI algorithms, etc.

③④ Sends Evidence of Device to Verifier through TAM. Evidence contain Log of Secure Boot, Firmware hash, Device key, etc.

⑤ Verifier returns result of checking Evidence as Attestation Result (AR)

⑥⑦ If the AR confirms Device is not hacked, TAM sends Soft/Data to Device
Proprietary implementations in the market

- There are many similar features implemented proprietary in the market. Some example.

 - Automotive: Sending unlock key for Quick Charge after customer paying option
 - Game console: Downloading game App and OTA from Console server
 - Test Equipment: Enabling unlock key for enabling Serial Decode features and Upgrading Sampling rate from the Vendors server
 - Surveillance Camera: Installing dedicated App on camera when service Personalization installs camera at home after customer subscribe the service
 - Healthcare terminal: Updating patients Personalization Data on the terminals at the hospital
 - Video HDD recorder, Set-top box: Updating DRM library or DRM crypto key
Benefits of TEEP/SUIT/RATS vs proprietary implementations

• Proprietary implementation may not use publicly trusted protocol, methodology and cryptographic algorithms

• The Server and Devices may be manufactured by different vendors and still would like to have portability

• Protocol and mechanism defined by authorized organization as IETF provides secure and trustful guidance to all vendors with interoperability

• Improve security level of IoT devices connected on Internet

• Enable IoT business to use Public Certificate Authority
Remarks of assumption on TEEP

• TEE is used as one of the methods of hardware tamper resistance to improve protecting TEEP Protocol transactions, integrity of software stack in TEEP Devices, assuring Secure Boot etc.

• However, the hardware implementation of TEE hardware support varies among different hardware from none to highly integrated in the CPU.

• TEEP is defined as agnostic of TEE hardware implementation.

• The current state of consciousness about contents of Evidence to be sent from Device to Verifier, are log of Secure Boot, hash values of TEEP software stacks to be verified the integrity of Device at the Verifier.
Use cases of TEEP, SUITS, RATS (1/6)

- Automotive

Automotive Manufacture

Operators

Usage
- Unlock Quick Charge
- OTA
- Remote monitoring compromised cars
- Remote telemetry acquisition
Use cases of TEEP, SUITS, RATS (2/6)

• Network Equipment Vendors

Network Equipment Manage Server

Corporate IT department server

Usage
• Update CA certificate
• OTA
• Disable compromised device
Use cases of TEEP, SUITS, RATS (3/6)

• Home Security Appliances

Verifier

Home Security Service provider

TAM

Security Camera Vendor

Camera

Usage
• Install security service app when customer subscribes
• OTA
• Disable compromised device
Use cases of TEEP, SUITS, RATS (4/6)

• Electric Power Plants

Power Plant Vendors

Local Government Power Mgmt Server

Usage
• Install security service app for country emergency
• Shut down power plants when a plant is in danger
Use cases of TEEP, SUITS, RATS (5/6)

- Drone

Usage:
- Install Drone ID app for drone registration
- Disable drone when it falls into enemy hands
Use cases of TEEP, SUITS, RATS (6/6)

• Confidential Computing

Cloud Vendor, Distro Vendors

Cloud Vendor’s, VM orchestration server

Usage

• Install/Update/Delete Confidential VMs which can not read from Host CPU

• Confidentiality of User’s data inside VM is technically assured
Current status, what is remaining for RFC

• TEEP draft status
 • WG last call (WGLC), the draft is in stable status

• TEEP Protocol draft depends on SUIT and RATS drafts which are not RFC yet
 draft-ietf-cose-key-thumbprint
 draft-ietf-rats-eat: Approved-announcement to be sent::AD Followup
 draft-ietf-suit-manifest: submitted to IESG
 draft-ietf-suit-trust-domains: WGLC done, revised I-D needed
 draft-ietf-suit-mti: WGLC done, revised I-D needed
 draft-ietf-suit-report: ready for WGLC

The TEEP protocol draft will be submitting to IESG