
drgnWriting to Memory and

Breakpoints
LINUX PLUMBERS CONFERENCE 2023

Omar Sandoval

https://github.com/osandov/drgn

https://github.com/osandov/drgn

Agenda

• Quick introduction to drgn

• Memory writing and breakpoint basics

• Why in production?

• Brainstorming: mechanism and API

Introduction to drgn

• “Programmable debugger” in Python

• Building blocks: objects, types, stack

traces

• Kernel-specific “helpers”

• Complex interactive sessions and scripts

MemoryWriting and Breakpoints

• drgn is currently read-only

• Users have been asking for read-write features: overwritingmemory and

setting breakpoints

• Makes sense for development workflows (e.g. in QEMU over gdbstub)

MemoryWriting API Proposal

Write bytes to an address.
prog.write(address, bytes)

Set the value of an object in memory.
user = find_user(prog, 0)
user.locked_vm.counter.write_(0)

Breakpoint API Proposal

Set a breakpoint.
prog.set_breakpoint(address)
prog.set_breakpoint("function_name")
prog.set_breakpoint("file_name.c:lineno")

while True:
Wait for a thread to hit a breakpoint.
event = prog.get_thread_event()

Get some information from the event
stack_trace = event.thread.stack_trace()
print(stack_trace)
print(stack_trace[1]["local_variable"])

Resume the thread.
event.thread.resume()

Why In Production?

• Quick-and-dirty mitigation before a livepatch or kernel update

• Fix reference count bugs, accounting over/underflows, invalid states,

etc.

• Example: 981a37bab5e5 (“btrfs: properly enable async discard when

switching from RO->RW”)

Brainstorming

• Memory writing ideas
• Bring back /dev/kmem
• Custom kernel module
• KGDB

• Breakpoint ideas
• KGDB
• BPF?
• (Might need watchdog that kicks threads that have been stuck too long)

• Access control ideas
• CAP_SYS_ADMIN and/or CAP_SYS_MODULE
• Keyring

	

