
When kdump is way too much

Guilherme G. Piccoli (Igalia)

Linux Plumbers 2023 - Linux Debugging MC

gpiccoli (at) igalia.com / gpiccoli (IRC)

KD
UM

P

PST
OR

E



When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

Talk summary

2

● Steam Deck game console - Linux based (Arch)
○ Collect logs if panic happens - how/what info?

● Kernel infrastructure for panic data collecting
○ kdump (vmcore but, too “heavy”)

● Alternatives? Pstore!
○ Lightweight, not so much data collected
○ How can we improve this?



When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

The beginning: Steam Deck

3

● CPU/APU AMD Zen 2 (custom), 4-cores/8-threads

● 16 GB of RAM / 7" display

● 3 models of NVMe storage (64G, 256G, 512G)



When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

SteamOS

4

● SteamOS version 3 is based on Arch Linux (some extra pkgs on top)
○ Game mode (Gamescope), Desktop mode (KDE Plasma)
○ Gaming layers: Proton (Wine) / DXVK / VKD3D

● What if such complex SW stack crashes?
○ Interest in having log collecting on errors
○ Kernel panics - what action do we take?

● Arch Linux has no official kdump tool
○ Comprehensive wiki, but no automatic tooling



When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

But what should we collect?

5

● In case of a panic, we could try collecting:
○ vmcore
○ dmesg
○ extra information from userland processes

● But is vmcore too much? Hard to share, storage concerns
○ Is dmesg (call trace) enough? Maybe with some extra info
○ Statistics - logs from lots of users are helpful

● Rely on in-kernel infrastructure for that
○ What tools do we have available?



When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

The good ol’ kdump

6

● Kexec-based solution, new kernel collects data from the broken one
○ As soon the panic happens, jump to a fresh kernel…
○ …that was preloaded in a reserved / untouched memory region…
○ …so this new kernel can collect the vmcore of the broken one

● Such vmcore is (usually) compressed and stripped
○ Post-mortem analysis: can be inspected later
○ Also shared with others (like support teams)
○ Rich data collection, standard on servers



When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

But not always suitable…

7

● Pre-reserved memory required (crashkernel=)
○ >200M lately, for most distros
○ Reserved on boot, can’t adjust without reboot
○ Difficult to estimate properly

● Size of vmcore - could be even in the GB order 
○ Privacy: bunch of kernel data ready to be inspected (for good and bad)

● Risks during
○ Crash kernel booting (PCI devices, potential nightmare)
○ vmcore collecting (OOM, makedumpfile bugs, version incompat.)

https://salsa.debian.org/debian/kdump-tools/-/merge_requests/16
https://lore.kernel.org/linux-pci/20181018183721.27467-1-gpiccoli@canonical.com/


When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

Alternatives?

8

● Hypervisor-aided mechanisms
○ fadump (ppc)
○ hv_kmsg (hyper-v)
○ qemu dump-guest-memory

● netconsole
○ Or even serial console dump

● pstore (persistent storage)
○ Panic time data collection
○ Very flexible - multiple backends



When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

Pstore: the lightweight way

9

● Saves the kernel log in a persistent storage (backend)
○ Multiple backends: RAM, UEFI, ACPI ERST, block device

● Common in embedded devices - also in chromebooks
○ And the Steam Deck - stay tuned!

● Fast and (hopefully) transparent process
○ Bonus points: no kexec support is required!



When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

Pstore: Pros / Cons

10

● Various frontends as well: ftrace, console, pmsg (userspace)

● Doesn’t require memory reservation - see the UEFI backend!

● Can’t collect a full vmcore

● Run after panic notifiers (for now!)

● No tooling (AFAIK) to configure pstore and deal with logs
○ W.r.t logs, we have some elementary tool: systemd-pstore

https://lore.kernel.org/lkml/20220427224924.592546-1-gpiccoli@igalia.com/


When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

Presenting: kdumpst

11

● kdumpst is a new Arch Linux kdump and pstore tool
○ Available on AUR , supports GRUB and initcpio / dracut
○ Includes kdump vmcore collection and sysctl customizations

● Defaults to pstore; currently only ramoops backend
○ Supporting UEFI and systemd-boot planned

● Used by default on Steam Deck, able to submit logs to Valve
○ But how to improve the amount of logs collected?

https://gitlab.freedesktop.org/gpiccoli/kdumpst/
https://aur.archlinux.org/packages/kdumpst


When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

panic_print FTW

12

● Sysctl/parameter that enables printing extra stuff to dmesg during panic
○ All tasks’ status
○ Memory info, CPUs backtraces
○ Lock / Timer info

● May dump too much lines
○ Printing on panic “usual” risks

● Run after panic notifiers (this thing, again!)



When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

Interlude: panic notifiers 

13

● Notifier callbacks: list of functions to be executed in any order
○ Multiple types: atomic callbacks, blocking callbacks, etc
○ Panic notifiers == list of atomic callbacks executed on panic

● Any driver (even OOT) can register a notifier, to do...anything!
○ Risky for kdump reliability
○ But panic notifiers are sometimes necessary
○ "Solution": new kernel parameter (ofc), crash_kexec_post_notifiers
○ All-or-nothing option, runs all notifiers before kdump

● Refactor proposed, more details in this Kernel Recipes presentation

https://www.youtube.com/watch?v=ZIKuDM_RIW8


When kdump is way too much
Guilherme G. Piccoli (Igalia) // Linux Plumbers Conference 2023

Challenges/Ideas/Discussion

14

● Is pstore risky? Panic time data collection
○ Variable risk, depends on the backend

● ramoops limitations - not so easy to reserve some bits of memory
○ Risk of FW corrupting/retraining memory on boot
○ Idea: implement a test for all backends
○ Another idea: a kernel parameter to reserve some ramoops memory 

● The panic notifiers risks (addressed on refactor?)

● Too few data (even with panic_print)?
○ What else could we collect on panic time?



THANKS

15Credits: Title Image by brgfx on Freepik

https://www.freepik.com/free-vector/example-lever-with-two-different-size-boxes_20771074.htm

