
Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm Innovation Center, Inc.

Mukesh Ojha <quic_mojha@quicinc.com> (Staff Engineer)

Elliot Berman <quic_eberman@quicinc.com> (Senior Engineer)

14 Nov 2023

Minidump

Linux Plumbers Conference 2023

Devices in engineering mode frequently provide a mechanism for
generating full system DDR dump. However, for end user devices, it is

not feasible to capture the entire DDR content and transfer them
electronically. Now a days, typical size of DDR on a premium tier

phones is 12 GB and growing, so the problem is going to be worse.

Problem Statement

3

What is Minidump?

• Minidump provides a mechanism to nominate regions of memory that should be included in the
DDR dump

• Minidump could be triggered by kernel panic or by other subsystem crash (NOC error, watchdog
bite, firmware panic, more)

• Firmware does the minidump capture

4

Why Minidump?

• Minidump is primarily for a device deployed to the end user

• Deployed devices don’t want to send full DDR dump

• Crashes could be due to range of hardware or software bugs

• Kernel may not have opportunity to run but it may contain useful information

• At Qualcomm, ~30% of crashes don’t come from kernel panic

• The amount of useful and predefined data collected is limited. Hence, ability to debug issue off-
target is limited.

5

What about kdump?

✔ Flexibility: any userspace to collect dump and save/send it

6

What about kdump?

✔ Flexibility: whatever userspace you want to collect dump and save/send it

❌ Memory overhead: large reserved memory region for crash kernel (128MB for arm64)

7

What about kdump?

✔ Flexibility: whatever userspace you want to collect dump and save/send it

❌ Memory overhead: large reserved memory region for crash kernel (128MB for arm64)

❌ Two kernel boots to come back to normal operation (once to crash kernel, then normal boot)

8

What about kdump?

✔ Flexibility: whatever userspace you want to collect dump and save/send it

❌ Memory overhead: large reserved memory region for crash kernel (128MB for arm64)

❌ Two kernel boots to come back to normal operation (once to crash kernel, then normal boot)

❌ Only kernel triggers kdump

9

What about pstore?

✔ Low overhead during dump collection

• No extra kernel boots, userspace can collect dump after reboot

10

What about pstore?

✔ Low overhead during dump collection

• No extra kernel boots, userspace can collect dump after reboot

❌ Collection time overhead to copy to oops device

11

What about pstore?

✔ Low overhead during dump collection

• No extra kernel boots, userspace can collect dump after reboot

❌ Collection time overhead to copy to oops device

❌ Requires memory reservation for a ramoops region

12

What about pstore?

✔ Low overhead during dump collection

• No extra kernel boots, userspace can collect dump after reboot

❌ Collection time overhead to copy to oops device

❌ Requires memory reservation for a ramoops region

❌ Limited to memory that Linux can reliably copy from before crash

13

Minidump Differences

• Minimize memory overhead to capture a small dump

• Maintain table of physical addresses and sizes

• No need to copy dmesg buffers, ftrace buffers, etc.

• Reduced collection time overhead: firmware captures the minidump regions directly to storage
medium

14

Minidump Table
Note: some fields omitted for brevity

Table of Contents

status
revision
entry[0]
entry[1]

.

.

.

entry[0] {
 uint32_t status;
 u32 region_count;
 u32 regions_base;
}

regions[0] {
 char name[32];
 uint64_t addr;
 uint64_t len;
}

log_buf

On Qualcomm Technologies devices, firmware
traverses the Table of Contents, creates ELF with
the regions, and dumps the ELF to storage
medium (typically eMMC/UFS/SD card)

15

Minidump for Application processor (APSS)
• Older firmware implementation of the minidump

has put restriction on the number of APSS regions
could register is 200 based on the time it takes to
collect all the regions and reset to next boot.

• Upfront memory is allocated for MAX_LIMIT
region and its physical address saved in APSS
TOC.

• Any kernel client can fill qcom_minidump_region
and use minidump register API to register with
the minidump.

/**
 * struct qcom_minidump_region - APSS Minidump
region information
 *
 * @name: Entry name, Minidump will dump binary
with this name.
 * @virt_addr: Virtual address of the entry.
 * @phys_addr: Physical address of the entry to
dump.
 * @size: Number of byte to dump from @address
location,
 * and it should be 4 byte aligned.
 */
struct qcom_minidump_region {
 char name[MAX_NAME_LENGTH];
 void *virt_addr;
 phys_addr_t phys_addr;
 size_t size;
};

16

Minidump patches status in upstream

• Sent v5 of Minidump driver patches along with the support to enable it for
Qualcomm SoCs.

https://lore.kernel.org/lkml/1694429639-21484-1-git-send-email-quic_mojha@quicinc.com/

• Current intention is to collect all the existing pstore records like dmesg,
ftrace, console, pmsg.

https://lore.kernel.org/lkml/1694429639-21484-1-git-send-email-quic_mojha@quicinc.com/

17

Minidump support for Remote processors

• Registering minidump tables for remote processors like ADSP, CDSP, modem are already
supported in kernel

• Each remote processor maintains known list of segment to be dumped during recovery

• Core dump is read by user space on getting Uevent notification from devcoredump
framework via devcd addition.

• qcom_minidump() in driver/remoteproc/qcom_common.c is high level API which takes
care of remote processor’s minidump.

18

Some debug information aimed to be captured in Minidump

• Initial boot up dmesg logs

• MMIO tracing

• IRQ statistics

• Timer summary

• Run queue information

• Dump stack of each core in any kind of crash

• Dump stack of task which are stuck in D state from a very long time

• Memory/Slab/page owner information

19

Minidump outside Qualcomm

• Useful for other SoC vendors?

• Useful for resource constrained virtual machines?

Follow us on:

For more information, visit us at:

qualcomm.com & qualcomm.com/blog

Thank you
Nothing in these materials is an offer to sell any of the components

or devices referenced herein.

©2018-2023 Qualcomm Technologies, Inc. and/or its affiliated

companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of Qualcomm

Incorporated. Other products and brand names may be trademarks

or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated,

Qualcomm Technologies, Inc., and/or other subsidiaries or business units within

the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes

our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm

Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its

subsidiaries, substantially all of our engineering, research and development

functions, and substantially all of our products and services businesses, including

our QCT semiconductor business.

Snapdragon and Qualcomm branded products are products of Qualcomm

Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies are

licensed by Qualcomm Incorporated.

21

Minidump for Application processor (APSS)

• Enablement of minidump is controlled through a secure register.
• Minidump bit need to be set to enable minidump mode.

• Default mode is set to full dump. (already supported in up stream)

• Collects both full dump and minidump if both bits are set.

• Minidump download type is controlled through IMEM cookies.
• Default type is set to usb, dump gets downloaded to PC connected through USB to the SoC.

• Can be change to type ufs/emmc/sd-card where dump gets copied to the target dedicated partition.

	Slide 1: Minidump
	Slide 2: Problem Statement
	Slide 3: What is Minidump?
	Slide 4: Why Minidump?
	Slide 5: What about kdump?
	Slide 6: What about kdump?
	Slide 7: What about kdump?
	Slide 8: What about kdump?
	Slide 9: What about pstore?
	Slide 10: What about pstore?
	Slide 11: What about pstore?
	Slide 12: What about pstore?
	Slide 13: Minidump Differences
	Slide 14: Minidump Table
	Slide 15: Minidump for Application processor (APSS)
	Slide 16: Minidump patches status in upstream
	Slide 17: Minidump support for Remote processors
	Slide 18: Some debug information aimed to be captured in Minidump
	Slide 19: Minidump outside Qualcomm
	Slide 20
	Slide 21: Minidump for Application processor (APSS)

