

LINUX Plumbers Conference

Richmond, Virginia | November 13-15, 2023

Performance Monitor Control Unit (PMCU)

Jie Zhan - Huawei

Contents

- 1. Motivation
- 2. What PMCU does?
- 3. Software Design
- 4. Short Demo
- 5. Main Challenge

Motivation

• Performance Monitor Unit (PMU) are...

1. Counters for hardware events, e.g. cycles, cache misses, branch mispredictions 2. Great for performance analysis, resource management, debugging, task profiling, power modelling/management

BUT we found it...

1. Affecting latency/time-sensitive workloads

Example: "perf stat" monitoring VMs, 100+ events, running rt-tests

Impact: cyclictest latency increases by 50%

2. CPU utilization increases with targets

The more processes / threads we monitor, the more CPU utilization it occupies (0.1~0.2% CPU util / process)

<pre>root@localhost:/# while :; do cyclictest -D</pre>	20s -q;	sleep) 10s;	done	2	0
<pre># /dev/cpu_dma_latency set to Ous</pre>					. A	no perf
T: 0 (694) P: 0 I:1000 C: 20000 Min:	11 Act:	12	Avg:	13	Max:	88
<pre># /dev/cpu_dma_latency set to 0us</pre>						
T: 0 (697) P: 0 I:1000 C: 20000 Min:	11 Act:	22	Avg:	12	Max:	26
<pre># /dev/cpu_dma_latency set to 0us</pre>						
T: 0 (700) P: 0 I:1000 C: 20000 Min:	11 Act:	12	Avg:	12	Max:	25
<pre># /dev/cpu_dma_latency set to 0us</pre>						
T: 0 (703) P: 0 I:1000 C: 20000 Min:	11 Act:	12	Avg:	12	Max:	24
<pre># /dev/cpu_dma_latency set to 0us</pre>						
T: 0 (706) P: 0 I:1000 C: 20000 Min:	6 Act:	12	Avg:	12	Max:	92
<pre># /dev/cpu_dma_latency set to 0us</pre>						
T: 0 (709) P: 0 I:1000 C: 20000 Min:	17 Act:	18	Avg:	18	Max:	36
<pre># /dev/cpu_dma_latency set to 0us</pre>						
T: 0 (712) P: 0 I:1000 C: 20000 Min:	17 Act:	21	Avg:	18	Max:	91
<pre># /dev/cpu_dma_latency set to 0us</pre>						
^CT: 0 (715) P: 0 I:1000 C: 1309 Min:	11 Act	t: 1	.2 Avg	: 1	.2 Max:	perf 28
^C						

Latency impact on cyclictest by PMU monitoring

%CPU	%MEM	TIME+	COMMAND
0.2	Θ.Θ	0:16.02	perf
0.2	Θ.Θ	0:15.78	perf
0.2	0.0	0:14.69	perf
0.2	0.0	0:02.33	perf
0.2	0.0	0:02.21	perf
0.2	0.0	0:02.16	perf
0.2	0.0	0:02.16	perf
0.2	0.0	0:02.13	perf
0.2	0.0	0:02.13	perf
0.2	0.0	0:02.05	perf
0.2	0.0	0:01.99	perf
0.2	0.0	0:02.00	perf
0.2	0.0	0:01.93	perf
0.2	0.0	0:01.94	perf
0.1	0.0	0:02.43	perf
0.1	0.0	0:02.26	perf
0.1	0.0	0:02.24	perf
0.1	0.0	0:02.05	perf
0.1	0.0	0:02.06	perf
0.1	0.0	0:02.09	perf

CPU utilization occupied by "perf"

What PMCU does?

A module that controls core PMUs through external memory-mapped interfaces, offloading monitor work from CPU

Function

Configure core PMUs, switch events, and save PMU readings to memory

Procedure

- Process an event list for a few rounds
- In each round:
 - Read a set of event IDs and set to PMUs for all cores
 - Start counting, wait for a period, stop counting
 Save all PMU readings to memory
- Issue an IRQ when all rounds are done

Hardware view of PMCU (simplified)

Software Design

Designed with perf_event auxtrace framework

4 layers:

- sysfs: configs, e.g. pass event IDs
- perf tool perf-record controls PMCU data recording perf-report/script decodes PMCU data
- perf_event framework allocates AUX buffers, mapped to user space, passed to driver
- driver

interacts with the framework, configures hardware to produce results into the AUX buffers

Reference: <u>https://lwn.net/Articles/922351/</u>

_inux Plumbers Conference | Richmond, VA | Nov. 13-15, 2023

Short Demo

1. Enter event numbers in the 'user_events' file:

echo "11 8 b 3c 24 23" > /sys/devices/hisi_pmcu_sccl3/user_events

2. Start the sampling with 'perf-record':

perf record -e hisi_pmcu_sccl3/nr_sample=10,sample_period_ms=4/

3. Decode PMU data with 'perf-script':

perf report -D

Organization of PMCU data output

Organization of PMCU data output

Header

HISI PMCU data: size 0x7840 bytes												
Header: s	size 0x4	0 byte	s									
00000000: 0	00 00 40	00 06	00 00	00	30	00	00	00	00	00	00	00
00000010: 0	00 Oc 00	00 01	00 00	00	06	00	00	00	11	00	00	00
00000020: 0	08 00 00	00 Ob	00 00	00	3c	00	00	00	24	00	00	00
00000030: 2	23 00 00	00 00	00 00	00	00	00	00	00	00	00	00	00
Auxtrace but	ffer max	size:	0x400	0000								
Number of PM	MU count	ers in	para	lel	: 6							
Number of mo	onitored	CPUs:	48									
Compatible r	mode: no											
Subsample size: 0xc00												
Number of subsamples per sample: 1												
Number of ev	vents: 6											
Event 0: 0	0x0011											
Event 1: 0	8000x0											
Event 2: 0	0x000b											
Event 3: 0	0x003c											
Event 4: 0	0x0024											
Event 5: 0	0x0023											
Data: siz	ze 0x780	0 byte	s									

Data body

. . .

00000300:	00000000009190c8	Event	0011	CPU	38
00000308:	0000000000905798	Event	0011	CPU	46
00000310:	0000000000009905	Event	0011	CPU	7
00000318:	0000000000917760	Event	0011	CPU	15
00000320:	0000000000000a052	Event	0011	CPU	23
00000328:	0000000000000000	Event	0011	CPU	31
00000330:	000000000000c8b7	Event	0011	CPU	39
00000338:	00000000000c5d14	Event	0011	CPU	47
00000340:	000000000015ceb9	Event	0008	CPU	0
00000348:	000000000015cd5f	Event	0008	CPU	8
00000350:	00000000018e7a68	Event	0008	CPU	16
00000358:	0000000000007394	Event	0008	CPU	24
00000360:	00000000001e51ae	Event	0008	CPU	32
00000368:	0000000000e7212c	Event	0008	CPU	40
00000370:	00000000017468fb	Event	0008	CPU	1
00000378:	0000000001573094	Event	0008	CPU	9
00000380:	000000000009f40	Event	0008	CPU	17
00000388:	00000000180390c	Event	0008	CPU	25

Main Challenge

1. Synchronization between external and internal PMU accesses

ARM PMUs can be accessed from both internal sysreg (from local CPU) and external memory-mapped interfaces (from other CPUs or devices, e.g. PMCU) simultaneously. However, a mechanism for synchronizing counter accesses or reserving counters is missing.

2. Kernel support for ARM PMU external memorymapped accesses?

ARM PMUs are currently controlled from internal sysreg in Linux. External memory-mapped interfaces are not yet enabled.

Shall we enable support for it? Prioritized cores could avoid handling perf events and focus on the main workload.

Plumbers Conference

Richmond, Virginia | November 13-15, 2023

