
Tracing MC - LPC 2023

RTLA TODOs and requests

Daniel Bristot de Oliveira, Ph.D.

Senior Principal Software Engineer

1

2

▸ rtla is a suite aiming to give real-time users a set of tools to facilitate and automate the analysis

▸ rtla is an user-space binary that controls and parses (in-kernel) tracers

▸ It has three tools inside:

･ rtla timerlat

･ backed-by: timerlat tracer rtla timerlat components:

･ osnoise

･ backed-by: osnoise tracer

･ hwnoise

･ backed-by: osnoise tracer with
IRQs disabled (hwlat 2.0).

RTLA & kernel tracers

3

▸ rtla timerlat auto analysis example

RTLA & kernel tracers

http://www.youtube.com/watch?v=wxY-LOajEBY&t=87

4

▸ rtla timerlat and others options of tracing

RTLA & kernel tracers

http://www.youtube.com/watch?v=wxY-LOajEBY&t=305

5

▸ The osnoise tracer has a workload (busy-loop per CPU) and a set of tracepoints to measure execution time

･ We can run osnoise tracer without the work

･ We can extend it to work with (any) user-space workload adding auto-analysis

･ Need to find a way to sync a per-cpu variable with user-space

･ Add ipi root cause analysis (goooooo Valentin!)

▸ [root@x1 bristot]# cd /sys/kernel/debug/tracing/ && echo osnoise > set_event && echo NO_OSNOISE_WORKLOAD > osnoise/options && echo osnoise > current_tracer
▸ [root@x1 tracing]# cat trace
▸ # tracer: osnoise
▸ [...]
▸ # ||| / _-=> migrate-disable MAX
▸ # |||| / delay SINGLE Interference counters:
▸ # ||||| RUNTIME NOISE %% OF CPU NOISE +-----------------------------+
▸ # TASK-PID CPU# ||||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
▸ # | | | ||||| | | | | | | | | | |
▸ <idle>-0 [011] d..3. 34832.839504: thread_noise: swapper/11:0 start 0.000000000 duration 34832839502655 ns
▸ ibus-engine-sim-4045 [011] d..3. 34832.839543: thread_noise: ibus-engine-sim:4045 start 34832.839505329 duration 37043 ns
▸ <idle>-0 [007] d..3. 34832.850596: thread_noise: swapper/7:0 start 0.000000000 duration 34832850595038 ns
▸ chrome-30840 [007] d.h1. 34832.851167: irq_noise: local_timer:236 start 34832.851151387 duration 15422 ns
▸ chrome-30840 [007] ..s1. 34832.851173: softirq_noise: SCHED:7 start 34832.851168367 duration 4410 ns
▸ chrome-30840 [007] ..s1. 34832.851175: softirq_noise: RCU:9 start 34832.851173714 duration 804 ns
▸ chrome-30840 [007] d.h1. 34832.851322: irq_noise: call_function_single:251 start 34832.851321171 duration 910 ns
▸ chrome-30840 [007] d.h1. 34832.851397: irq_noise: call_function_single:251 start 34832.851396030 duration 811 ns
▸ chrome-30840 [007] d.h1. 34832.852153: irq_noise: local_timer:236 start 34832.852150044 duration 2723 ns
▸ chrome-30840 [007] ..s1. 34832.852153: softirq_noise: RCU:9 start 34832.852152992 duration 312 ns
▸ chrome-30840 [007] d.h1. 34832.853153: irq_noise: local_timer:236 start 34832.853149933 duration 3297 ns
▸ chrome-30840 [007] d.h1. 34832.854152: irq_noise: local_timer:236 start 34832.854149908 duration 2105 ns

RTLA TODOs

6

▸ The osnoise tracer tracepoints can be leveraged for two other purposes:

▸ rtla exec-time
･ ibus-engine-sim-4045 [011] d..3. 34832.839543: thread_noise: ibus-engine-sim:4045 start 34832.839505329 duration 37043 ns
･ chrome-30840 [007] d.h1. 34832.851167: irq_noise: local_timer:236 start 34832.851151387 duration 15422 ns
･ chrome-30840 [007] ..s1. 34832.851173: softirq_noise: SCHED:7 start 34832.851168367 duration 4410 ns

▸ Not only min/max/avg... But also probabilistic analysis (pWCET)

▸ rtla cache-noise

･ Get per-cpu counters to measure the net noise - free from other interferences

▸ rtla workload <params like cpu> <seed to recreate the same workload> <workload> <prioritization>

･ Parameterized synthetic workload generator

･ Pseudo-random

･ Schedulable task set generator

･ Workload other than just spinning

･ Like... using stress-ng workloads called from main()

･ osnoise/exectime/cache-noise collect

RTLA TODOs

7

▸ RTSL: the formally proved scheduling latency analysis

▸ It is the thing that inspired RTLA

▸ It gives the worst case scheduling latency!

▸ But it depends on preemptirq tracepoints

･ They are heavy and not enabled by default

▸ I need to find ways to mitigate the overheads of
preemptirq tracepoints to have them enabled by
default

RTLA TODOs

8

▸ Two tracers at once!

･ There are tracers that does not make sense to run together

･ But, we could run timerlat/osnoise/hwnoise with other tracers

･ Like timerlat & function

･ Is that... to hard?

･ Can we have an in-kernel "file" to merge multiple instances?

▸ Tracer histogram

･ We can create histograms for tracepoints, but not for tracers

･ It would be good to have histograms for timerlat

･ Add it for all tracers, or make a special file with stats for timerlat on osnoise/dir

RTLA Requests: kernel side

9

▸ rtla uses libtracefs

･ It enables the trace instances, set all data, set prio and parses the trace

･ It currently parses single-cpu

･ Can it parse on per-cpu file?

▸ Using libtrace-cmd would be better

･ rtla record to set things and save data to trace.dat

･ rtla report to report data

･ Is it possible to record with libtrace-cmd?

･ Just save a buffer...

▸ Find a better way to list dependencies on Makefile

･ Today we point the dependencies by hand (Linus asked us)

･ Is there another way to do this, with these new tools

･ Also for eBPF

･ How perf does it?

RTLA Requests: library side

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

10

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

