
Linux Plumbers Conference 2023

Contribution ID: 90 Type: not specified

Function return hook integration with Function
graph tracer

Tuesday 14 November 2023 15:10 (20 minutes)

Currently, there are two different function return hook mechanisms: kretprobe (rethook) and function graph
tracer. Both have similar but different ways to hook the function return. They both modify the return address
on the stack (or link-register) with their trampoline code and save the correct return address to their own list
for each task. The difference is how they allocate the per-task list. Kretprobe allocates a linked list of storage
objects when it is initialized. Users can specify the maximum number of concurrently used objects at that
point. However, the object list is not shared among kretprobes. On the other hand, function graph tracer
allocates a shadow stack array for each task when it is enabled. This is simpler but consumes more memory
at that point. However, this shadow array will be shared among all functions, so each function takes up very
little memory.
The problem is that if both mechanisms are used at the same time, they both allocate such memory indepen-
dently, and the function return is hooked twice or more. This is inefficient. To avoid this, we can integrate
them. However, it might be better to remove kretprobes and use fprobe’s exit handler to simplify the solution.
In short, there are two different function return hook mechanisms, kretprobe and function graph tracer. They
both have similar but different ways to hook the function return. The problem is that if both are used at the
same time, they both allocate such memory independently, and the function return is hooked twice or more.
This is inefficient. To avoid this, we can integrate them or remove kretprobes and use fprobe’s exit handler.

In this session, we will talk about the background and how to do this, and my expectations. BPF and other
tools may need some more work about this change.

Primary author: Mr HIRAMATSU, Masami (Google)

Presenter: Mr HIRAMATSU, Masami (Google)

Session Classification: Tracing MC

Track Classification: LPC Microconference: Tracing MC


