
LPC23 - Tracing micro conference
Masami Hiramatsu (Google) <mhiramat@kernel.org>

Unifying return hooks
Simplify kernel interface

Current function return hooks in the Linux kernel

We have 3 different return hooks in the Linux
kernel:

● Function-graph-tracer
● Kretprobe
● Fprobe

But implementations are different.

What is the shadow stack here?
- A space for saving original return address

and other info (e.g. frame pointer,
time-stamp, private-data)

- As same as the real stack, each context
(task) has the shadow stack in use.

There are 3 shadow stacks
- Function_graph tracer

- Task::ret_stack
- Fprobe (rethook)

- Task::rethooks
- Kretprobe

- Task::kretprobe_instances

Shadow Stack

Per-task stack

Global pool + per-task list

Introduce the rethook interface to switch the
kretprobe trampoline and fgraph trampoline.

The old plan

Kprobe event

kretprobe
trampoline

fgraph
trampoline

kretprobe ftrace

Kretprobe event

ftrace
trampoline
(for entry)

Software
break

kprobe

pt_regs

ftrace_regs

Incomplete
pt_regs

fgraph

Rethook

Fprobe has been introduced for function entry
and exit events. But fprobe is based on ftrace
which provides ftrace_regs.

Thus, function enter/exit event uses
incomplete pt_regs.

And we still have 2 different return hooks!

Current

rethook
trampoline

fgraph
trampoline

kretprobe ftrace

Function
enter/exit

event

Software
break

kprobe

fprobe

rethook

fgraph

2 different hooks for the
same feature

pt_regs

ftrace_regs

Incomplete
pt_regs

Kprobe
event

Kretprobe
event

X86-64 only

Interrupt
base probe

Software
base probe

ftrace
trampoline
(for entry)

(1) Make func-graph use ftrace_regs
(2) Move fprobe on the func-graph
(3) And ask all kretprobe user to use fprobe

instead.

Next (ongoing) plan

Ask to move kretprobe user to fprobe

rethook
trampoline

fgraph
trampoline

kretprobe ftrace

Software
break

kprobe

fprobe

rethook

fgraph

pt_regs

ftrace_regs

Incomplete
pt_regs

Kprobe
event

Kretprobe
event

ftrace
trampoline
(for entry)

Function
enter/exit

event

Then, remove kretprobe event (compatible
feature is provided by fprobe event)

Next (ongoing) plan

Ask to move kretprobe user to fprobe

rethook
trampoline

fgraph
trampoline

kretprobe ftrace

Software
break

kprobe

fprobe

rethook

fgraph

pt_regs

ftrace_regs

Incomplete
pt_regs

Kprobe
event

Kretprobe
event

ftrace
trampoline
(for entry)

Function
enter/exit

event

Then, we can deprecate the kretprobe return
hooks.

Next (ongoing) plan

Ask to move kretprobe user to fprobe

rethook
trampoline

fgraph
trampoline

kretprobe ftrace

Software
break

kprobe

fprobe

rethook

fgraph

pt_regs

ftrace_regs

Incomplete
pt_regs

Kprobe
event

ftrace
trampoline
(for entry)

Function
enter/exit

event

Removing kretprobe makes kprobe simpler
and easier to maintain.

- “Kprobe == software breakpoint”
- Only fgraph trampoline hooks function

return.

Future proposal

Kprobe
event

fgraph
trampoline

ftrace

Kprobe
event

Function
enter/exit

event

Software
break

kprobe

fprobe

fgraph

pt_regs
ftrace_regs

ftrace
trampoline
(for entry)

E.g.
- Do we really want to unify return hooks?

- Keeping 2 different return hooks in kernel?
- Performance differences?

- Is it OK to use ftrace_regs? -> next talk
- Can we remove kretprobe?
- Can’t we just share a trampoline?

Discussion

Proprietary + Confidential

Appendix

Proprietary + Confidential

Return Hooks

“Function return hook” hooks the function exit to
call a callback.

- Callback at the function entry
- Modifies the return address to a

trampoline.
- Save original return address to shadow

stack.
- Callback from the trampoline

- Use assembler code to save registers
or, use a software breakpoint.

- Recover the original address
- Restore it from shadow stack.

What is the return hook?

trampoline

Callee function Callback

Function Caller

Proprietary + Confidential

Shadow Stack

Per-task stack (function-graph)
- Allocate stack page(s) for each task (thread)
- Simple array of the saved entries

 Pros
- Simple and fast
- Scalable (in performance)

 Cons
- Consume memory even if the task is not

involved.

Per-task stack v.s. Global pool

Global pool (rethook)
- Allocate fixed number of entries in

system-wide pool.
- Make a linked list for each task

 Pros
- Object size is controllable.
- Usually smaller memory consumption

 Cons
- User needs to tune the number of objects to

avoid miss-hit
- Consuming memory if many objects

selected.
- Not scalable (in performance) -> will be

solved by objpool

Current rethook is completely no scalability of
the performance (overhead).

Unifying it to function-graph return hook will
solve this problem.

Scalability of the shadow stacks

Chart of the performance numbers

Objpool (from v6.7) will fix this
performance issue.

So performance may not be the
issue anymore.

Scalability of the shadow stacks (solved)

Chart of the performance numbers

Rethook will use less memory if it is used for a few
probes, but it will be increased if

- Use many probes
- Use many pre-allocated node / probe to

avoid miss-hit.
- N=# of tasks is safe number of nodes.

User has to fine tune the pre-allocated objects.
(nr_maxactive)

Memory usage and tuning

10 CPU,
500 tasks

1 probe
(N=cpu)

100 probe
(N=cpu)

1 probe
(N=task)

100 probe
(N=task)

Rethook 480B 48KB 24KB 2.4MB

Ftrace
retstack

2MB 2MB 2MB 2MB

Rethook: (N: # of pre-allocated nodes, a.k.a. nr_maxactive)
- N * rethook_node(=48byte)

Note that objpool will increase the memory
footprint.

Comparison of the memory usage

10 CPU,
500 tasks

1 probe
(N=cpu)

100 probe
(N=cpu)

1 probe
(N=task)

100 probe
(N=task)

Rethook 480B 48KB 24KB 2.4MB

Rethook
+ objpool

1.6KB 160KB 65KB 6.5MB

Ftrace
retstack

2MB 2MB 2MB 2MB

Rethook: (N: # of pre-allocated nodes)
- N * rethook_node(=64B)

Rethook + objpool: (N: # of pre-allocated nodes, M: # of CPUs)
- (roundup_power_of_2(N+1) * ptr) * M + N * rethook_node

Proprietary + Confidential

Callback arguments issue

pt_regs is designed for storing all registers in the
interrupt context (some registers are saved
automatically)

- Some registers can not be saved manually
(e.g. pstate @arm64)

- Most of the registers are not used but take
time to save it.

So unless it is saved by an interrupt, pt_regs is not
correct and takes more overhead.
This is the reason why arm64 doesn’t support
kprobes on ftrace. (and it should not support
kretprobe too)

Problem of using pt_regs
Interrupt
(e.g. kprobe, uprobes)

pt_regs
Interrupt
handler

pt_regs?
Register
saving

jump / call
(e.g. kretprobe/ftrace)

Ftrace_regs is a partial set of pt_regs (most
architectures just wraps pt_regs).

fgraph_ret_regs is a shrunken version of
ftrace_regs, but it only has return value.

Ftrace_regs is a handy option

pt_regs

(all registers)

ftrace_regs

(params+stack)

fgraph_ret_regs
(retval)

>=

ftrace_regs only saves the registers for;
- Function parameters
- Function return values
- Hooking/unwinding function call

(e.g. frame pointer, link register or stack
pointer and instruction pointer)

- (optional) arch implementation dependent

Don’t include state flags, callee-save registers etc.

What is the ftrace_regs?

int function_foo(int param1, long param2, void *param3)
{

…

return ret;
}

[2.794307] function_graph_enter_regs+0x184/0x280
[2.796119] ? fprobe_selftest_target+0x4/0x20
[2.797809] ? test_fprobe_entry+0x91/0x300
[2.799409] ? fprobe_selftest_target+0x4/0x20
[2.801105] ftrace_graph_func+0xcd/0x170
….

