CXL Emulation in QEMU: Progress, Status and most importantly… What’s next?

Jonathan Cameron - Huawei, Fan Ni - Samsung
What landed since LPC 2022

Major topics in flight.

Discussion: What next?

Jump in at any time with questions!

Usual warning - we will only discuss published specifications.
Pre LPC 2022

Basic enablement!
- CFMWS, Root Bridge, Root Port, Switch USP/DSP, Type 3

Today (so landed upstream in last year)
- Volatile and mixed Type 3 devices
- Multiple HDM decoders everywhere (more complex setups)
- CDAT (plus PCI DOE) - discoverable performance characteristics
- RAS error injection (event records)
- Poison injection

Under review / RFCs posted
- Dynamic Capacity Devices*
- CCI rework / Fabric Management Features*
 - Switch CCI
 - FM-API over MCTP over I2C
- Scan media

In staging tree, but not actively developed
- ARM support
- Performance Monitors

Posted but no plan to upstream (yet)
- Niagara MHD support
- Type 2 device support.

* More details follow!
Prior to the introduction of DCD, adding or releasing memory capacity is very disruptive

- The host needs to reprogramming the HDM decoders
- Outstanding traffic must be quiesced
- System reset is needed

DCD is a memory device implementing dynamic capacity allowing memory capacity changes dynamically without reprogramming the HDM decoders

- Presenting its maximum capacity to each host
- HDM decoders are programmed for the entire DPA range
- DCD command set is implemented to control actual memory allocation/deallocation
 - Through DC extents
Augmenting type3 memory device with Dynamic Capacity
- 1-8 DC Regions
- Extent list representing extents accepted by the host
- Read/Write to the the DC Region

Mailbox command support
- Get Dynamic Capacity Configuration (4800h)
- Get Dynamic Capacity Extent List (4801h)
- Add Dynamic Capacity Response (4802h)
- Release Dynamic Capacity (4803h)

Using QMP interface to initiate DC extent add/release request.
- FM is not implemented yet in Qemu*
What we miss now for DCD related?

- Only add dynamic capacity capability to type 3 device
 - No Multiple headed device for DCD
 - No LD-FAM, GFD DCD
- DC region is set to be non-volatile only
- No shared extents
 - A device is only used by a single host
 - Tag is not used
- Generation number is not really used
- Add/release capacity is prescriptive
 - Extent list based
- DCD Management Command Set not implemented
Issue 1:

- FM can initiate to add **multiple** extents in one request (5604h)
 - Table 7-62: Initiate Dynamic Capacity Add Request Payload
 - “The processing of the actions initiated in response to this command **may or may not result in a new entry** in the Dynamic Capacity Event Log.”
- However, each Dynamic Capacity Event Record can hold **only one extent** (8.2.9.2.1.5 Dynamic Capacity Event Record)

Issue 2:

- The host responses a DC add event with exact one **Add Dynamic Capacity Response (4802h)**
 - The response holds an extent list
- Extents accepted by the host can be a **subset** of what the device offers for a DC Extent Add Request
What is Fabric Management?

CXL Virtual Hierarchy fabrics (PCIe like ones) enable dynamic reconfiguration.
- Configurable Switches / Multi Logical Devices
- Dynamic Capacity (MLD, MH-SLD, MH-MLD)

Why emulate it?
- Test bench for Fabric Managers (?)
- CXL standards prove out.
- Standard interfaces to drive host tests (CI!)
- Some interfaces may be exposed to hosts

Note we aren’t talking about large scale CXL fabrics (r3.0+)
What are control paths? In band PCIe

- Primary Mailbox
- Switch CCI
 - Configure switch

Leverage existing in band mailbox in new ways
What are control paths? + OoB MCTP (e.g. I2C)

- (Primary Mailbox)
- Switch CCI
 - Configure switch
- MCTP to FM owned CCI in MLD
 - Configure LD allocations
 - Configure DCD
- MHD Pool CCI
- Out of Band MCTP to pretty much anywhere!

Direct control channels to devices
What are control paths? MCTP over PCIe VDM

- (Primary Mailbox)
- Switch CCI
 - Configure switch
- MCTP to FM owned CCI in MLD
 - Configure LD allocations
 - Configure DCD
- MHD Pool CCI
- Out of Band MCTP to pretty much anywhere!

Nothing new (yet!)
What are control paths? Tunneling!

- (Primary Mailbox)
 - MH Pool CCI accessed via Tunnel
- Switch CCI
 - Configure switch
 - Tunnel via PCIe VDM to downstream devices
- MCTP to FM owned CCI in MLD
 - Configure LD allocations
 - Configure DCD
 - Tunnel to each LD within MLD.
- MHD Pool CCI
 - Tunnel to each LD within MHD.
- Out of Band MCTP to pretty much anywhere!
 - Do everything!

Tunneling between devices is over MCTP over PCIe VDM
What are control paths? Tunneling!

- (Primary Mailbox)
 - MH Pool CCI accessed via Tunnel
- Switch CCI
 - Configure switch
 - Tunnel via PCIe VDM to downstream devices
- MCTP to FM owned CCI in MLD
 - Configure LD allocations
 - Configure DCD
 - Tunnel to each LD within MLD.
- MHD Pool CCI
 - Tunnel to each LD within MHD.
- Out of Band MCTP to pretty much anywhere!
 - Do everything!

For QEMU, HOST A == HOST B == BMC!
What do people care about? (Set priorities)

- Dynamic Capacity Devices
 - Shared DCD regions?
 - Multi Host DCD (multiple instances of QEMU?)
- Multi Head Devices?
- Fabric Management
 - LD assignment, vPPB assignment
 - OoB interfaces (emulated MCTP host interfaces?)
 - DCD
 - Filling in all the details (there are a lot of commands!)
- Type 2 Devices?
- ARM support (could do with some help!)

What have we forgotten? (longer term!)

- Large Scale Fabrics?
 - How much should we do in QEMU?
- Performance optimization?
- IDE / TDISP etc?

What are people sitting on out of tree, that they might want to upstream?