
Improving suspend/resume
Saravana Kannan <saravanak@google.com>



Why do we care?

User experience when they hit the power button on a phone.
User experience when they wake up their WearOS watch.
Power wasted doing pointless work is bad user experience too.
Time taken for your door camera to wake up and record/upload live video.
… countless more cases where faster/more efficient resume will make user 
experience better.



Current issues

● fw_devlink needs more info to break dependency cycles.
● s2ram is slow on a 9 core system, but s2idle has been problematic.
● Why wait for usb to resume when trying to draw the lock screen?
● Global async resume is slower than selective async resume?



fw_devlink and cycles
Can’t have fast suspend/resume without proper dependency tracking

● fw_devlink can detect all cycles accurately since v6.3.
● Not enough information in DT to break cycles.
● Can’t enforce probe/suspend-resume ordering in this case.
● Board specific logic in drivers and device specific DT property to break cycles.
● Frameworks can’t delete their device_link_add() in case it helps break a 

cycle.
● Let’s add a generic DT property to break cycles:

■ post-init-supplier = <&phandle1>, <&phandle2>...;
■ Indicates suppliers that are not needed for device initialization.
■ Open to other names: needed-post-init ?



Runtime PM
Why wait to resume USB if you are trying to draw the lock screen?

● Make fw_devlink=rpm the default.
○ Any concerns or known issues? Or just enable and see what breaks?

● Anything else that can be done to make it easier for vendors to enable 
runtime PM?



Global async suspend-resume
Do we need to focus on this for Android?

● If every device is runtime PM enabled, is there any benefit in enabling global 
async suspend-resume for all devices?

● Should we make global async suspend-resume the default on DT based 
systems now that we have fw_devlink?

● Some vendors are claiming global async suspend-resume is slower than 
selective async suspend-resume. Anyone else seeing this? If so, why? How 
can we fix this?

● I want to make this “just works” by default on Android devices. What else 
needs to be addressed to get there?



s2idle vs s2ram
fast. functional. Pick one?

● PSCI woes. Broken CPU_SUSPEND implementation. Can hackup s2idle to use 
CPU_OFF somehow for systems that don’t have a working CPU_SUSPEND?

● No single good way to transition drivers off syscore_ops.
○ Why are upstream drivers allowed to use syscore_ops? Eg: 

drivers/clk/samsung/clk.c
○ How should we execute code that needs 1 CPU active with IRQs disabled?

● Drivers do stuff in hotplug notifiers that are relevant for suspend. Eg: quiesce 
hardware watchdog

● Lots of code duplication if you need to support s2idle and s2ram at the same 
time. Should we make this easier? How?




