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Android BPF Goals

● Enable Modern BPF functionality
○ CO-RE
○ Libbpf helpers

● Enable secure vendor access to BPF tracepoints
● Build solid foundation for future use cases
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Android Requirements

● Minimal impact to boot time
● Cognitive use of memory
● Control access of BPF program attach points
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BPF Application

BPF Subsystem

High Level BPF Overview

BPF Loaded Objects

BPF Verifier
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Libbpf

● Primary userspace library used with BPF 
● Provides helper functions to ease BPF application development
○ Loading BPF programs into kernel
○ Attaching loaded programs to kernel event sources
○ Map Creation & Access
○ Data Access
○ CO-RE Implementation

● Maintained as part of the kernel tree
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CO-RE

● Compile Once - Run Everywhere
● Attempts to solve BPF program portability issues
● Implemented in userspace libraries
● Access structures which may have changed between kernel versions
● Marks fields as relocatable at compile time
● Uses running kernel’s BTF info to relocate field offsets prior to loading 

BPF program into kernel
● Does not address the case where meaning of struct field changes
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Current Implementation

● Single point of access for BPF
● BPFloader application in early init process
● Single threaded loading of all BPF programs
● Based on custom library to handle BPF syscalls
● Missing much of the modern BPF functionality
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Android’s BPFloader
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Supported Program Types

BPF Program Types Networking System Vendor

CGROUP_SKB Y

CGROUP_SOCK Y

CGROUP_SOCK_ADDR Y

KPROBE Y R

PERF_EVENT R

SCHED_ACT Y

SCHED_CLS Y

SOCKET_FILTER Y Y Y

TRACEPOINT Y R

XDP Y

Y = Supported, R = Requested
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Possibilities for Enabling CO-RE in Android

● Implement custom Android-Specific library
○ Constant development and maintenance required as new BPF features are 

created
○ Can optimize for our specific use case

● Integrate Libbpf into existing bpfloader
○ Does not solve boot time problem
○ Potential for significant increase in memory usage
○ Potential problems with compatibility between vendor BPF programs and 

system libbpf library version
● Enable BPF programs to use libbpf natively
○ Allows developers and vendors to choose when their programs are loaded
○ Resolves compatibility issue between system libraries and vendor bpf programs
○ Requires additional work to develop access control mechanism

● Other approaches?
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Attach Point Access Control

● Need to verify that tracepoints are part of KMI before attaching
○ KMI varies between kernel branches
○ KMI additions can occur post kernel release (requires allowlist updatability)

● Could be accomplished via allowlist in bpfloader
○ Check bpf program’s attach points prior to loading into kernel
○ Allowlist must be dynamic and maintain support for all kernel versions

● BPF Program/Kernel Module based access control
○ Hook into the kernel’s bpf_prog_load(), bpf_prog_attach() functions
○ First BPF program loaded as part of boot
○ Check subsequent bpf progs against running kernel’s KMI
○ Enables the control of ‘native’ libbpf programs
○ Unknown- how to check source of bpf program in kernel?
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Attach Point Access Control
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BPF Subsystem

New Access Control BPF 
Program

Attach Point Access Control
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BPFloader Open Questions

● What is the compatibility story for libbpf?
○ Do we need a trampoline library for future API changes?

● What can be done to optimize loading at boot time?
● Can system BTF data be cached by loader process?
○ Refactor libbpf calls to allow passing in BTF object

● How do we update ACL with KMI changes?
● Extending Metadata for selinux policy?Goals & Requirements
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‘Native Libbpf’ Open Questions

● Will this approach pass security review?
● How do we get KMI ACL from kernel
○ Do we create a subset of KMI?

● How to pair BPF object with source for program type verification?
● What can be done to optimize BTF memory footprint?
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General Questions

● Do we need to be able to update BPFloader/system BPF 
programs via apex?

● Is there another approach to consider?
● What policies are needed regarding vendor responsibilities?
● Are there other program types we should enable?

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



Thank You!
Neill Kapron <nkapron@google.com>


