
BPF Access Control 
and CO-RE in Android

Neill Kapron <nkapron@google.com>



Android BPF Goals

● Enable Modern BPF functionality
○ CO-RE
○ Libbpf helpers

● Enable secure vendor access to BPF tracepoints
● Build solid foundation for future use cases

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



Android Requirements

● Minimal impact to boot time
● Cognitive use of memory
● Control access of BPF program attach points

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



BPF Application

BPF Subsystem

High Level BPF Overview

BPF Loaded Objects

BPF Verifier

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions

Userspace

Kernel

BPF 
Library

BPF Bytecode

LLVM Compiler

LoaderCO-RE 
Relocation

Syscall

BPF Program

Kernel Event 
Sources

Tracepoints

Socket Filters

Perf Events
Attach

Load

BPF Maps



Libbpf

● Primary userspace library used with BPF 
● Provides helper functions to ease BPF application development
○ Loading BPF programs into kernel
○ Attaching loaded programs to kernel event sources
○ Map Creation & Access
○ Data Access
○ CO-RE Implementation

● Maintained as part of the kernel tree
Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



CO-RE

● Compile Once - Run Everywhere
● Attempts to solve BPF program portability issues
● Implemented in userspace libraries
● Access structures which may have changed between kernel versions
● Marks fields as relocatable at compile time
● Uses running kernel’s BTF info to relocate field offsets prior to loading 

BPF program into kernel
● Does not address the case where meaning of struct field changes

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



Current Implementation

● Single point of access for BPF
● BPFloader application in early init process
● Single threaded loading of all BPF programs
● Based on custom library to handle BPF syscalls
● Missing much of the modern BPF functionality

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



Android’s BPFloader

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions

Map Defs

Map Defs

Map Defs

Networking

System

Vendor

Android
Specific

BPF 
Program

.elf Files on 
Trusted 

Filesystems

BPFloader Application

Program Type 
Allowlist

Android 
Specific BPF 

Library

Userspace

Kernel

Open

Load

Check

Syscall

BPF Subsystem

BPF Loaded Objects

BPF Verifier

Kernel Event 
Sources

Tracepoints

Socket Filters

Perf Events Attach

BPF Maps



Supported Program Types

BPF Program Types Networking System Vendor

CGROUP_SKB Y

CGROUP_SOCK Y

CGROUP_SOCK_ADDR Y

KPROBE Y R

PERF_EVENT R

SCHED_ACT Y

SCHED_CLS Y

SOCKET_FILTER Y Y Y

TRACEPOINT Y R

XDP Y

Y = Supported, R = Requested

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



Possibilities for Enabling CO-RE in Android

● Implement custom Android-Specific library
○ Constant development and maintenance required as new BPF features are 

created
○ Can optimize for our specific use case

● Integrate Libbpf into existing bpfloader
○ Does not solve boot time problem
○ Potential for significant increase in memory usage
○ Potential problems with compatibility between vendor BPF programs and 

system libbpf library version
● Enable BPF programs to use libbpf natively
○ Allows developers and vendors to choose when their programs are loaded
○ Resolves compatibility issue between system libraries and vendor bpf programs
○ Requires additional work to develop access control mechanism

● Other approaches?

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



Attach Point Access Control

● Need to verify that tracepoints are part of KMI before attaching
○ KMI varies between kernel branches
○ KMI additions can occur post kernel release (requires allowlist updatability)

● Could be accomplished via allowlist in bpfloader
○ Check bpf program’s attach points prior to loading into kernel
○ Allowlist must be dynamic and maintain support for all kernel versions

● BPF Program/Kernel Module based access control
○ Hook into the kernel’s bpf_prog_load(), bpf_prog_attach() functions
○ First BPF program loaded as part of boot
○ Check subsequent bpf progs against running kernel’s KMI
○ Enables the control of ‘native’ libbpf programs
○ Unknown- how to check source of bpf program in kernel?

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



Attach Point Access Control

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions

Map Def

Map Def

Map Def

Networking

System

Vendor

Android
Specific

BPF 
Program

.elf Files on 
Trusted 

Filesystems

BPFloader Application

Program Type 
Allowlist

LIBBPF

Userspace

Kernel

Open

Load

Check

Syscall

Attach Point 
AllowlistCO-RE 

Relocation

BPF Loader Allowlist Approach

BPF Subsystem

BPF Loaded Objects

BPF Verifier

Kernel Event 
Sources

Tracepoints

Socket Filters

Perf Events Attach

BPF Maps

NetBPFload Application

Android 
Specific BPF 

Library Load

Open

NetBPFload & 
Networking BPF 

Programs are updatable 
via mainline apex



BPF Subsystem

New Access Control BPF 
Program

Attach Point Access Control

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions

“Native libbpf” + BPF access control program

NetBPFLoad Application

Program Type 
Allowlist

Userspace

Kernel
Syscall

System BPF Application 1

Network

Android
Specific

BPF 
Program
.elf Files

Attach Point 
AllowlistBPF Loaded Objects

BPF Verifier

Kernel Event 
Sources

Tracepoints

Socket Filters

Perf Events
Attach

BPF Maps

LIBBPF

Open

Load

CO-RE 
Relocation

Vendor BPF Application 1

LIBBPF

Open

Load

CO-RE 
Relocation

Vendor BPF Application 2

LIBBPF

Open

Load

CO-RE 
Relocation

Android 
Specific BPF 

Library Load

Open

Hook into 
bpf_prog_load()

Hook into 
bpf_prog_attach()

Mainline
Networking

Apex



BPFloader Open Questions

● What is the compatibility story for libbpf?
○ Do we need a trampoline library for future API changes?

● What can be done to optimize loading at boot time?
● Can system BTF data be cached by loader process?
○ Refactor libbpf calls to allow passing in BTF object

● How do we update ACL with KMI changes?
● Extending Metadata for selinux policy?Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



‘Native Libbpf’ Open Questions

● Will this approach pass security review?
● How do we get KMI ACL from kernel
○ Do we create a subset of KMI?

● How to pair BPF object with source for program type verification?
● What can be done to optimize BTF memory footprint?

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



General Questions

● Do we need to be able to update BPFloader/system BPF 
programs via apex?

● Is there another approach to consider?
● What policies are needed regarding vendor responsibilities?
● Are there other program types we should enable?

Goals & Requirements

BPF Overview

Libbpf & CO-RE

Current Implementation

CO-RE + Access Control

Questions



Thank You!
Neill Kapron <nkapron@google.com>


