
Pixel 6 support on android-mainline

William McVicker (Google)
Peter Griffin (Linaro)

Pixel 6 has been supported on

android-mainline for 2 years.

Overview of Pixel 6 support on android-mainline

● Goal to add testing of the GKI kernel with a real in-market Android device.

○ Catch regressions from upstream merges into android-mainline before they are propagated to Android vendors.

○ Increase Android specific testing on real in-market hardware.

■ All android-mainline kernel changes are tested on Pixel 6 before submission (in presubmit and postsubmit).

● Allows for kernel developers to test upstream patches from the list to evaluate performance impacts

○ This helps Android developers be more involved in upstream discussions.

● Allow for easier in-market kernel upgrades

○ It is easier to maintain functionality and performance incrementally for each Linux release, than to upgrade from one LTS release

to the next.

○ Quicker bring-up of new devices when based off of android-mainline drivers vs launch kernel on older LTS branch.

Example upstream features developed and/or tested on Pixel 6 with android-mainline

● 16k support for f2fs

○ https://lore.kernel.org/all/20231002230935.169229-1-drosen@google.com/

● VM CPUFreq

○ https://lore.kernel.org/all/20230731174613.4133167-1-davidai@google.com/

● Proxy Execution

○ https://lore.kernel.org/all/20230819060915.3001568-1-jstultz@google.com/

● pKVM

● userfaultd move operation

○ https://lore.kernel.org/all/20231009064230.2952396-1-surenb@google.com/

● Binder development and testing

○ Rust implementation: https://lore.kernel.org/all/ZUKaSD4sPtHzlqfT@google.com/

● Multi-gen LRU (feature tested on android14-6.1)

■ https://lore.kernel.org/all/20230413214326.2147568-1-kaleshsingh@google.com/

https://www.google.com/url?q=https://lore.kernel.org/all/20231002230935.169229-1-drosen@google.com/&sa=D&source=editors&ust=1699595238502832&usg=AOvVaw0V3fJ-_NGI1k5R-X6AmbdS
https://www.google.com/url?q=https://lore.kernel.org/all/20230731174613.4133167-1-davidai@google.com/&sa=D&source=editors&ust=1699595238503210&usg=AOvVaw0q1CED7s_WJEA7fDLYGCuI
https://www.google.com/url?q=https://lore.kernel.org/all/20230819060915.3001568-1-jstultz@google.com/&sa=D&source=editors&ust=1699595238503485&usg=AOvVaw1YeQyCcwOgfaves3onoKZ6
https://www.google.com/url?q=https://lore.kernel.org/all/20231009064230.2952396-1-surenb@google.com/&sa=D&source=editors&ust=1699595238503761&usg=AOvVaw0I0DifEWjqAkhy846cykdg
https://www.google.com/url?q=https://lore.kernel.org/all/ZUKaSD4sPtHzlqfT@google.com/&sa=D&source=editors&ust=1699595238504008&usg=AOvVaw2oCHwYI8jPBIA1QDh2t9V9
https://www.google.com/url?q=https://lore.kernel.org/all/20230413214326.2147568-1-kaleshsingh@google.com/&sa=D&source=editors&ust=1699595238504290&usg=AOvVaw0jtRQdINovcxrLMn2Qz5OD

Enable Android vendors to do kernel development on Pixel 6

● AOSP development boards often lack certain hardware found on real phones.
● Partners like Linaro often want to run latest AOSP with the latest Linux kernels.

The Pixel 6 android-mainline project is creating various public resources
- Public documentation for building and flashing Pixel kernels.

- https://source.android.com/docs/setup/build/building-pixel-kernels
- Periodically update the AOSP mainline Pixel 6 kernel repo.

- https://android.googlesource.com/kernel/manifest/+/refs/heads/gs-android-gs-raviole-mainline

https://www.google.com/url?q=https://source.android.com/docs/setup/build/building-pixel-kernels&sa=D&source=editors&ust=1699595238544073&usg=AOvVaw0KZOa9pP6Q7UCsfCh8J6SC
https://www.google.com/url?q=https://android.googlesource.com/kernel/manifest/%2B/refs/heads/gs-android-gs-raviole-mainline&sa=D&source=editors&ust=1699595238544419&usg=AOvVaw3Z3ycGwYfSajcWglODNY5Q

android-mainline versus Linux release lag

● Often android-mainline releases merge within 1 day of Linus’ Linux release.

● Looking at RC3 dates, the lag is much longer due to:
○ Forward porting Pixel 6 drivers.
○ Resolving conflicts with GKI technical debt.

● 16 upstream bugs found by testing Pixel 6 on
android-mainline in CI!

● However often testing starts late in the RC stages.
If Pixel 6 was upstream we could test and find
regressions much earlier!

Why upstream Pixel 6?

Pixel 6 on android-mainline has many benefits, but upstreaming the SoC and phone unlocks
even more, including:

○ Testing earlier in the Linux release candidate cycle with more CI systems (lkft, kernelci).
○ Adding a phone form factor upstream kernel development platform!
○ Reducing GKI technical debt due to an upstream user.

Initial Pixel 6 series under review on LKML:
https://lore.kernel.org/linux-serial/ZScZPstpJInZxwlD@google.com/T/#m8a08b45cbbf317c
229982741cc2c5e0e208bf3ab

Goal is to replace downstream Pixel 6 android-mainline drivers with their upstream
counterparts.

https://www.google.com/url?q=https://lore.kernel.org/linux-serial/ZScZPstpJInZxwlD@google.com/T/%23m8a08b45cbbf317c229982741cc2c5e0e208bf3ab&sa=D&source=editors&ust=1699595239517452&usg=AOvVaw3WKq-TGoYRKt056pyjfG1o
https://www.google.com/url?q=https://lore.kernel.org/linux-serial/ZScZPstpJInZxwlD@google.com/T/%23m8a08b45cbbf317c229982741cc2c5e0e208bf3ab&sa=D&source=editors&ust=1699595239517745&usg=AOvVaw0IewoqK8DBGrVHaSxoOjJR

DT overlays Problem Statement
Andriod phone models have many board revisions before mass production, e.g. EVT, DVT and PVT. Typically a
‘board-id’ is baked into the firmware to identify the particular board model and revision. A common base DTB is
shared across all device variants with a board revision specific overlay applied at runtime by the bootloader.

● The ‘board-id’ overlay scheme is used by multiple Android vendors already, e.g Qcom, Samsung, Pixel.
○ Android documentation for using multiple device tree overlays is found at

https://source.android.com/docs/core/architecture/dto/multiple.
● Re-using the same DTB for each board variant saves space on the device and allows you to support more devices

with the same dtb and dtbo images.
○ Pixel 6/6Pro/6a saves ~6.8MB by sharing the same DTB for each overlay.

size_of_dtb * (# of variants - 1)

● Using a numeric ID vs compatible string, reduces string comparison in the kernel
○ Supporting all these board variants via string compatibles would lead to an explosion of board compatibles)
○ For example, Pixel 6/6 Pro/6a and unrelease gs101 bring-up hardware has 29 different ‘board-id’/’board-rev’

variants.

https://www.google.com/url?q=https://source.android.com/docs/core/architecture/dto/multiple&sa=D&source=editors&ust=1699595239623100&usg=AOvVaw3G7l3fj-_LskgYUGhJyzvX

Existing Implementations
Overlays are applied at build time and each supported board uses the overlayed DTB while DTBOs are reserved for
plug-in daughter boards.

Proposal
Extend DT overlay usage upstream to include board variants based on a vendor defined board-id property.

Thoughts?

