
© 2023 Arm

Morten Rasmussen, Dietmar Eggemann, Hongyan Xia
14. November 2023

uclamp in CFS:
Fairness, latency, and
energy efficiency

Linux Plumbers Conference 2023
Power Management and Thermal micro-conference

2 © 2023 Arm

Motivation
CFS task placement and schedutil DVFS policy is based compute demand derived from
CPU utilization tracked on per-task basis (PELT).
Utilization clamping, uclamp_{max, min}, offers a user-space interface to bias and
override a task’s compute demand for scheduling and DVFS decisions.

Main issues with uclamp:
• Aggregation of per-task uclamp settings for each CPU runqueue, i.e. sum() vs. max().
• Implementation complexity: Add another PELT-based signal at ‘source’ and propagate, or compute

when needed.

time

util_clamp limits

tracked util (PELT) clamped util

task util

3 © 2023 Arm

uclamp aggregation: max()
Upstream uclamp currently considers uclamp settings as performance hints describing
desired throughput rate when executing, not actual throughput (rate * cpu_time).
• uclamp aggregates per-task uclamp settings using max() aggregation.

Capacity is shared with any other tasks on the same CPU runqueue.
• This is particularly unfortunate for uclamp_max.

util_avg: 100
min: 250

max: 1024

util_avg: 100
min: 250

max: 1024

Runqueue
cfs_rq util: 100+100 = 200
cfs_rq util_min: max(250, 250) = 250
cfs_rq util_max: max(1024, 1024) = 1024
cfs_rq clamped util: clamp(200, 250, 1024) = 250

util_avg: 1024/5
min: 0

max: 512

Runqueue
cfs_rq util: 5*1024/5 = 1024
cfs_rq util_min: max(0, 0, 0, 0, 0) = 0
cfs_rq util_max: max(512, 512, 512, 512, 512) = 512
cfs_rq clamped util: clamp(1024, 0, 512) = 512
Capacity per task: 512/5 = 1025 always-running tasks

4 © 2023 Arm

uclamp aggregation: max() issues
Current implementation has per-task uclamp settings applied to rq utilization.
Advantage:
• No additional PELT-derived signals to maintain, clamp applied when needed.

Disadvantages:
• Max-clamped task’s utilization may not represent true compute demand at all:

For tasks running alone, utilization is likely to over-estimate demand.
For co-scheduled tasks, tasks’ utilization may under-estimate demand.

• Difficult to distinguish UCLAMP_MAX throttled CPU and CPU running at its peak.
https://lore.kernel.org/all/20230916232955.2099394-2-qyousef@layalina.io/

• Max-clamping impact on rq utilization causes problems when tasks with different max-clamps are queued together.
Causes frequency spikes.

• Tracking max clamp setting for all tasks on rq doesn’t scale well. Currently implemented using buckets.
• Difficult to reason about throughput of max-clamped tasks.

Cause of current issues:
• uclamp not applied at ‘source’ and virtually impossible to reconstruct at rq level.
• Max aggregation doesn’t provide a clear policy for balancing clamped tasks.

Possible solutions:
• Max-aggregation filter + minimum capacity-per-task (unclear).
• uclamp sum() aggregation with clamping applied at source creating a new PELT-derived signal.

https://lore.kernel.org/all/20230916232955.2099394-2-qyousef@layalina.io/

5 © 2023 Arm

uclamp users: Android
Given the current gaps in the mainline uclamp implementation it is unclear if uclamp is
widely used.
• Android (on Pixel 8) uses mainline uclamp implementation but for tasks only.

Google essentially implemented uclamp sum() aggregation at task group level.
• Android features CONFIG_USE_GROUP_THROTTLE and CONFIG_USE_VENDOR_GROUP_UTIL.
• Implemented using Android Vendor hooks.
• We actively try to raise interest in Google to get engaged into the mainline discussion of uclamp

sum() aggregation.

Can we agree on a useable upstream uclamp implementation?

6 © 2023 Arm

uclamp: sum() aggregation RFC
RFC: Learn from Android changes and consider sum() aggregation:
• RFC on LKML: https://lore.kernel.org/all/cover.1696345700.git.Hongyan.Xia2@arm.com/
• No changes to user-space API and fundamental goals remain the same.
• Add new PELT-derived signal: util_avg_clamped on tasks and propagated to root rq.
• Significant code complexity reduction: +341/-751 LOC.
• Pre-liminary results look good, see patch set cover letter.

7 © 2023 Arm

Overview of uclamp sum aggregation

util_avg: 500
min: 200
max: 450

util_avg_uclamp: 450

util_avg: 510
min: 0

max: 1024
util_avg_uclamp: 500

Root cfs_rq

util_avg: 160
min: 0

max: 80
util_avg_uclamp: 80

util_avg: 10
min: 50

max: 1024
util_avg_uclamp: 50

util_avg: 670
min: 0

max: 1024
util_avg_uclamp: 580

util_avg: 160
min: 0

max: 1024
util_avg_uclamp: 160

Group FG Group BG

Task 0 Task 1 Task 2

GROUP_THROTTLE is just
UCLAMP_MAX on groups.
Same code path should be
able to deal with both

8 © 2023 Arm

Comparison (max vs. sum): Frequency Spikes
Scenario:
• Always-running task with UCLAMP_MAX of 300 (30%).
• Joined by a task with 40% duty cycle and default UCLAMP_MAX (1024) (100%)

max()

sum()

Stable and lower frequency

Expensive frequency spikes

9 © 2023 Arm

Comparison (max vs. sum): Task placement
Scenario:
• 8 tasks uclamp_max = 120

Upstream: max()

Upstream: max() + fix

RFC: sum()

Patch set: 'Set max_spare_cap_cpu even if max_spare_cap is 0'

Max aggregation allows scheduler to place task
anywhere.

Fix limits placement options to lower capacity CPUs
but still not balanced. (Ab)use of EM calculations.

Tasks placement stable and balanced throughput.

10 © 2023 Arm

RFC results: Simpler code and good initial results

include/linux/sched.h | 13 +--

init/Kconfig | 32 --------

kernel/sched/core.c | 316 ++++++---

kernel/sched/cpufreq_schedutil.c | 19 ++---

kernel/sched/fair.c | 354 ++++++++++++++++++++++--

kernel/sched/pelt.c | 146 +++++++++++++++++++++++++++++++--

kernel/sched/rt.c | 4 -

kernel/sched/sched.h | 208 +++++++++++++++--------------------------------

8 files changed, 341 insertions(+), 751 deletions(-)

Better uclamp with less than half of the code
Example: Jankbench 75.44% jank reduction and 0.9% energy increase, sum vs. max aggregation
Example in util_fits_cpu():
• From more than 100 lines (including tons of comments) to just one line:

return fits_capacity(util, capacity);

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

