arm e ML L

uclampinCFS: - . - 7. .y
Fairness, Iatency,and CRNI o

energy efficiency * LA

Linux Plumbers Conference 2023

Power Management and Thermalimicro-€onference /
. . .

Morten Rasmussen, Dietmar Eggemann, Hongyan Xia

14. November 2023 . >

© 2023 Ar m . '

2

Motivation

-- CFS task placement and schedutil DVFS policy is based compute demand derived from
CPU utilization tracked on per-task basis (PELT).

-- Utilization clamping, uclamp_{max, min}, offers a user-space interface to bias and
override a task’s compute demand for scheduling and DVFS decisions.

task util

A

} util_clamp limits

tracked util (PELT) clamped util

time
-~ Main issues with uclamp:
- Aggregation of per-task uclamp settings for each CPU runqueue, i.e. sum() vs. max().

- Implementation complexity: Add another PELT-based signal at ‘source’ and propagate, or compute
when needed.

© 2023 Arm a r m

3

uclamp aggregation: max()

-- Upstream uclamp currently considers uclamp settings as performance hints describing

desired throughput rate when executing, not actual throughput (rate * cpu_time).
- uclamp aggregates per-task uclamp settings using max() aggregation.

Runqueue

util_avg: 100

min: 250
max: 1024

util_avg: 100
min: 250

max: 1024

»

cfs_rq util: 100+100 =200
cfs_rq util_min: max (250, 250) =250
cfs_rqutil_max: max(1024, 1024) = 1024
cfs_rqg clamped util: clamp(200, 250, 1024) =250

-~ Capacity is shared with any other tasks on the same CPU runqueue.

- This is particularly unfortunate for uclamp_max.

Runqueue

util_avg: 1024/5

min: O
max: 512

)

5 always-running tasks

© 2023 Arm

»

cfs_rq util: 5%1024/5 = 1024
cfs_rqg util_min: max(0, 0, 0, 0, 0) =0
cfs_rqutil_max: max(512, 512,512, 512,512)=512
cfs_rq clamped util: clamp(1024, 0, 512) =512
Capacity per task: 512/5 =102

arm

uclamp aggregation: max() issues

-— Current implementation has per-task uclamp settings applied to rqg utilization.
-- Advantage:
- No additional PELT-derived signals to maintain, clamp applied when needed.

-—- Disadvantages:

- Max-clamped task’s utilization may not represent true compute demand at all:
- For tasks running alone, utilization is likely to over-estimate demand.
+ For co-scheduled tasks, tasks’ utilization may under-estimate demand.
- Difficult to distinguish UCLAMP_MAX throttled CPU and CPU running at its peak.
+ https://lore.kernel.org/all/20230916232955.2099394-2-qyousef@layalina.io/
- Max-clamping impact on rq utilization causes problems when tasks with different max-clamps are queued together.
-+ Causes frequency spikes.
- Tracking max clamp setting for all tasks on rq doesn’t scale well. Currently implemented using buckets.
- Difficult to reason about throughput of max-clamped tasks.

-~ Cause of current issues:
- uclamp not applied at ‘source’ and virtually impossible to reconstruct at rq level.
- Max aggregation doesn’t provide a clear policy for balancing clamped tasks.

I

-- Possible solutions:

- Max-aggregation filter + minimum capacity-per-task (unclear).
- uclamp sum() aggregation with clamping applied at source creating a new PELT-derived signal.

4 ©2023Arm a rm

https://lore.kernel.org/all/20230916232955.2099394-2-qyousef@layalina.io/

5

uclamp users: Android

-- Given the current gaps in the mainline uclamp implementation it is unclear if uclamp is

widely used.
- Android (on Pixel 8) uses mainline uclamp implementation but for tasks only.

-- Google essentially implemented uclamp sum() aggregation at task group level.
- Android features CONFIG_USE_GROUP_THROTTLE and CONFIG_USE_VENDOR_GROUP_UTIL.
- Implemented using Android Vendor hooks.
- We actively try to raise interest in Google to get engaged into the mainline discussion of uclamp
sum() aggregation.

-- Can we agree on a useable upstream uclamp implementation?

© 2023 Arm a r m

uclamp: sum() aggregation RFC

-- RFC: Learn from Android changes and consider sum() aggregation:
« RFC on LKML: https://lore.kernel.org/all/cover.1696345700.git.Hongyan.Xia2@arm.com/
- No changes to user-space APl and fundamental goals remain the same.
- Add new PELT-derived signal: util_avg _clamped on tasks and propagated to root rq.
- Significant code complexity reduction: +341/-751 LOC.
- Pre-liminary results look good, see patch set cover letter.

6 ©2023 Arm a rm

Overview of uclamp sum aggregation

-- GROUP_THROTTLE is just util_avg: 670
UCLAMP_MAX on groups. min: 0
Same code path should be max: 1024 Root cfs_rq
able to deal with both util_avg_uclamp: 580

util_avg: 510 util_avg: 160
min: 0 min: 0
max: 1024 max: 80
util_avg_uclamp: 500 util_avg_uclamp: 80

util_avg: 500 util_avg: 10 util_avg: 160
min: 200 min: 50 min: 0
max: 450 max: 1024 max: 1024
util_avg_uclamp: 450 util_avg_uclamp: 50 util_avg_uclamp: 160

Task 2

7 © 2023 Arm a rm

Comparison (max vs. sum): Frequency Spikes

-- Scenario:
- Always-running task with UCLAMP_MAX of 300 (30%).
- Joined by a task with 40% duty cycle and default UCLAMP_MAX (1024) (100%)

Expensive frequency spikes
root cfs_rq[5]: util and util_uclamp

1400 =
1200 3 ‘ =
E — util_avg =
o 1000 3 =
maX() S 800 3 — cpu_frequency =
<! E . =
S 600 3 —— root_cfs_util_uclamp
400 3 =
200 3
0 4 T i T T T T i T T T T i
381.5 382 382.5 383 383.5 384 384.5
time [s]
)) Stable and lower frequency
root cfs_rq[5]: util and util_uclamp
. — | | | s | ===
1000 z ! : : ‘/, = — util_avg =
SuU m() % 800 — cpu_frequency =
| 600 3] ; i ; ; : ' =
S 4007 == T S et *\‘;\ — root_cfs_util_uclamp =
200 3 ;
03
= i T T T T i T T T T i T T T T i T T T T ; T T T T ; T T T T i
1048 1048.5 1049 1049.5 1050 1050.5 1051
time [s]

8 ©2023Arm a rm

9

Comparison (max vs. sum): Task placement

Stacked CPU residency of [112] selected tasks

Total

-~ Scenario:
« 8 tasks uclamp_max =120

Max aggregation allows scheduler to place task

[[954:Tthread1-6]
[[952:rt-app]
(O] [955:rt-app]

>
g 30 anywhere. I (955:tapp]
. 20 rt-
Upstream: max() I (o
" [l [949:rt-app]
00 [[950:rt-app]
0 1'0 2IO 3'0 4IO l . l 5|0

Runtime (s)

Stacked CPU residency of [112] selected tasks

Upstream: max() + fix

Patch set: 'Set max_spare_cap_cpu even if max_spare_cap is @' Fix limits placement options to lower capacity CPUs

but still not balanced. (Ab)use of EM calculations.

[1945:rt-app]

[[951:Tthread1-7]
[1947:rt-app]
[1950:rt-app]
[[951:rt-app]
[1949:rt-app]
[[946:rt-app]

t T T T T t T T T T t T T T T t T T T T t
0 10 20 30 40 50 60

Runtime (s)

Stacked CPU residency of [112] selected tasks
Total
5.0
4.0

RFC: sum() : .

Tasks placement stable and balanced throughput.

70

[15067:Tthread1-5]
[15067:rt-app]
[15068:rt-app]
[[5069:rt-app]
(B [50866:rt-app]
[[50865:rt-app]

2.0
1.0
0.0
t : T T T t T r r r 1
0 10 20 30
Runtime (s)

© 2023 Arm

[[5063:rt-app]
T T T

40

arm

RFC results: Simpler code and good initial results

13 +--
32 --------

include/linux/sched.h
init/Kconfig

kernel/sched/core.c N e e e Y e L L T e T
kernel/sched/fair.c R e o e L B T
kernel/sched/pelt.c 146 ++++++++++++++++H++HH+HH - -
kernel/sched/rt.c

kernel/sched/sched.h L e e

|

|

|
kernel/sched/cpufreq_schedutil.c | 19 ++---

|

|

|

4 -

8 files changed, 341 insertions(+), 751 deletions(-)

-~ Better uclamp with less than half of the code
-- Example: Jankbench 75.44% jank reduction and 0.9% energy increase, sum vs. max aggregation
-- Exampleinutil fits cpu():

« From more than 100 lines (including tons of comments) to just one line:
return fits capacity(util, capacity);

10 © 2023 Arm a r m

arm

© 2023 Arm

Thank You
Danke
Gracias
Grazie
157157
HYHED
Asante
Merci
AL CF
Toddlq
Kiitos

B
SRIBIN]
NTIN

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

