
CPUfreq/sched &
VM guest workloads problems

Saravana Kannan <saravanak@google.com>
David Dai <davidai@google.com>

Quick Overview
Continuing my LPC 2022 talk

Workloads running inside a VM have terrible power/performance when compared to
running on the host even if you assume virtualization overhead is zero.

● Load tracking/task placement inside VM is broken because:
○ VM has no awareness of architecture differences between pCPUs (Eg: big/little, P/E)
○ VM has no awareness of pCPU min/max/current frequency

● Host side CPU frequency scaling is broken because:
○ Host has no idea of load on each vCPU.
○ Host has no idea of workload types inside vCPU (eg: io_boost)

https://lpc.events/event/16/contributions/1195/

How did we address it?
Architecture awareness and CPU min/max frequencies

Added crosvm support to insert the relevant DT properties:

● Add dmips-per-MHz to CPU nodes to make VM aware of CPU differences
● Add operating-points-v2 table to CPU nodes to make VM aware of CPU min/max

frequencies

How did we address it?
Current CPU frequency and load awareness

CPU frequency MMIO device:

● Register to get vCPU’s frequency - Traps to host and gets the pCPU’s current frequency

When the VM doesn’t support virtualized arch CPU performance counters, this register is
used in a similar fashion and is registered with the scheduler.

● Register to set vCPU’s “hardware” frequency - Traps to host and set vCPU thread’s uclamp
min

The host is indirectly made aware of the vCPU loads by the VM cpufreq governor setting
this register.

Does it work at a fundamental level?
Synthetic workloads

Fmin on Little to Fmax on big
Host: 180ms to go from Fmin on Little to Fmax on big

VM before: Infinity. Never upmigrates!

VM after: 183ms to go from Fmin on Little to Fmax on big

https://ui.perfetto.dev/#!/?s=d1fa9d0b41180c4171067afe03a8a2210579f2a1f8a6701d9400b599f1b6813c
https://ui.perfetto.dev/#!/?s=29c321337934678f50bb439ced579b0106dab6314c3a6644bd52ea7335b9d6ad

Time to migrate to big
Host: 47ms to hit Fmax on Little and then upmigrate to big

VM before: Once capacity is set, upmigrates too soon at 34ms.

VM after: 46ms to hit Fmax on Little and then upmigrate to big

https://ui.perfetto.dev/#!/?s=c54e1bf891ac5c1af0ef73f6ec542971df5fc8717daaf983a15f0d08a23e8939
https://ui.perfetto.dev/#!/?s=3b8a22283e76dc553da9fc29b28fca07a63d82476416324ac4267a64b1a2329a

Time to Fmax on big
Host: 133ms to get to Fmax on big

VM before: 188ms to get to Fmax on big

VM after: 135ms to get to Fmax on big

https://ui.perfetto.dev/#!/?s=e5b51f292cdec46d1f28fe6d6d1df3fe7a6106e5cf8319c42c28c2aecb5808e7
https://ui.perfetto.dev/#!/?s=9e32837fb01c7c00bc5be89aff7a62f6ed9b715196624b2f910ab2ce8760a604

New thread boost
Host: 33ms to Fmax on Little

VM before: 78ms to Fmax on Little

VM after: 32ms to Fmax on Little

https://ui.perfetto.dev/#!/?s=4a594980207e6cee391fb3f338ef240f3c43f265f4fb6a08c18da186acdb4ac9
https://ui.perfetto.dev/#!/?s=91c351d45f33d539c76c57bc821860118297459c1e6ca3ea07f783d289baaf34

uclamp aggregation issues
Host: 12ms to go to Fmax

VM with default uclamp: 66ms to Fmax. The min is applied to rq util. Aggregation between threads is “max of min”

VM with additive uclamp min: 12ms to Fmax. The min is applied to the thread’s util. Aggregation between threads is additive.

https://ui.perfetto.dev/#!/?s=2849245516fb046c644a6a463d02661eedf8c899d81fab44fbd642787ab04f57
https://ui.perfetto.dev/#!/?s=581f1bcbd87b5dff9cae82576392cc9621c9880a1904c29bcd0465377cbf853a
https://ui.perfetto.dev/#!/?s=9204204674e36e75c3fa96951a5263c484eb4a4b71920777d1ae1055be2d4e79

Deeper dive: upstream patches/plans

Deeper dive

Host kernel

KVM

KVM

VMM
(e.g. CrosVM)

Host

Guest kernel

User

OS Kernel

Hypervisor

Guest

Hypercall

cpufreq

Pros:

● No expensive MMIO exit to userspace
required, resulting in fast performance

● Adding a new scheduler signal in the
host kernel allows for more
accurate/better scheduler behavior

Cons:

● Hypercalls are hypervisor specific and
require custom implementation

● Inflexible, policy is determined by the
kernel

● Difficult to maintain due to guest ABI
considerations 1

Applications

schedutil Set Util
Get Freq

HVC Handler

1. Discussion on LKML

v1: Hypercall + util_guest prototype

https://lore.kernel.org/all/20230330224348.1006691-1-davidai@google.com/

Deeper dive

Host kernel

KVM

KVM

VMM
(e.g. CrosVM)

Host

Guest kernel

User

OS Kernel

Hypervisor

Guest

writel/readlI/O Abort

Set UClamp
Get Freq MMIO exit

cpufreq

Pros:

● No host side kernel changes required.
● Simple/Generic interface between host

and guest
● Host OS/Hypervisor agnostic
● Policy decided by userspace

Cons:

● Performance suffers due to expensive
context switches(High latency per exit)

● Limited by the syscall interface where
some UClamp may lacks
expressiveness

Applications

schedutil

Offset 0x0 0x4 0x8 ...

Register CPU0_GET_FREQ CPU0_SET_FREQ CPU1_GET_FREQ ...

v3: MMIO + uclamp

Deeper dive

KVM

Host kernel

Set UClamp
Get Freq

KVM

VMM
(e.g. CrosVM)

Host

Guest kernel

User

OS Kernel

Hypervisor

Guest

writel/readlI/O Abort

cpufreq

Pros:

● Flexible/Portable ABIs
● Handles Guest MMIO aborts without

exiting to userspace
● eBPF progs can optionally defer MMIO

exits to userspace
● eBPF progs can be updated without

having to update kernel/userspace

Cons:

● eBPF permission controls are less
flexible(no SECCOMP for bpf helpers)

Applications

eBPF
JITschedutil

Attach Prog

Offset 0x0 0x4 0x8 ...

Register CPU0_GET_FREQ CPU0_SET_FREQ CPU1_GET_FREQ ...

v3 + eBPF

Real world results

Results: PCMark

Results: Roblox game

Results: FIO

Results: CPU ML workload

Discussions

Discussions

● Additive uclamp
○ Simple proposal: Add a sched attr flag that also applies uclamp min/max to task util.

● eBPF for virtual MMIO devices
○ Need basic support - Will Deacon talked about this in KVM summit
○ Need to optimize it for our needs - Call BPF programs without migration disable/enable

additive uclamp
--- b/include/uapi/linux/sched.h
+++ b/include/uapi/linux/sched.h
 #define SCHED_FLAG_KEEP_PARAMS 0x10
 #define SCHED_FLAG_UTIL_CLAMP_MIN 0x20
 #define SCHED_FLAG_UTIL_CLAMP_MAX 0x40
+#define SCHED_FLAG_UTIL_CLAMP_TASK 0x80

–-- b/kernel/sched/fair.c
+++ b/kernel/sched/fair.c

+unsigned long uclamp_task_value(struct task_struct *p, enum uclamp_id clamp_id)
+{
+ if (!p->uclamp_req[clamp_id].apply_to_task)
+ return uclamp_none(clamp_id);
+ return uclamp_eff_value(p, clamp_id);
+
+
 static inline unsigned long task_util(struct task_struct *p)
 {
- return READ_ONCE(p->se.avg.util_avg);
+ return clamp_val(READ_ONCE(p->se.avg.util_avg),
+ uclamp_task_value(p, UCLAMP_MIN),
+ uclamp_task_value(p, UCLAMP_MAX));
 }

 static inline unsigned long _task_util_est(struct task_struct *p)
 {
 struct util_est ue = READ_ONCE(p->se.avg.util_est);

- return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
+ return clamp_val(max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED))
+ uclamp_task_value(p, UCLAMP_MIN),
+ uclamp_task_value(p, UCLAMP_MAX));
 }

