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When to use power management technology?



Use case: User space governor, implements P-state control on behalf 

of applications

Challenges

1. Nature of the application preventing the OS governors to act

Polling threads, e.g. Telco use cases => limits 

impact of kernel power infra. & governors. 

All  cores appear 100% busy.

2. Root access for application 

3. Application implementation of power monitor/measure/act 

User space governor manages power for 

workload/application overcomes root &             

implementation of power control 

4. Metrics visibility

Power control decision relies on Key Performance  

Indicators (KPIs) specific to the application => not OS visible

5. Diversity between virtualised and host approach, write once run 

anywhere not possible

6. Availability of Power controls in the guest

Overall benefit is to achieve residency in Low Power Modes, in this example 

via slow down / P-state controls

Virtualized Approach

No direct access to OS Power Infrastructure for user space governors
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Components in a Solution (Simplified)

• User space governor manages power for workload/application

• Access to Power control relies on Key Performance Indicators (KPIs) 
specific to the application

• Virtualised Power Controls requires a “custom” API, interface and 
backend to get access 

• Build components

• Custom P-state API for requests from Guest to Host

• Virtio-serial for transport guest => host

• Backend daemon / agent

• Backend module to interface to cpufreq / intel_pstate

• Latency range is single digit milli-seconds

• Opportunity

• Guest visible proxy sysfs/…/scaling min and max..frequency 
requests, a future evolution for virtualised use cases?

• Backed by a simple precedence policy in the host kernel

Many use cases, support for direct control, virtualized architecture
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Summary & Discussion

• Why? Direct control path allows wider adoption and usage of power technology

• Opportunity to move away from ”custom” build to standard approach (APIs and driver for Guest OS)

• Guest OS driver for P-states?

• Increase adoption of lower power modes and reduce carbon footprint via lower electricity consumption 

• Thank you!
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