

Power Saving for Virtualised Workloads

Chris MacNamara
Srinivas Pandruvada

Energy Efficiency Opportunity
S

y
s

te
m

 %
 B

u
s

y

24 Hour Time Period

When to use power management technology?

Use case: User space governor, implements P-state control on behalf

of applications

Challenges

1. Nature of the application preventing the OS governors to act

Polling threads, e.g. Telco use cases => limits

impact of kernel power infra. & governors.

All cores appear 100% busy.

2. Root access for application

3. Application implementation of power monitor/measure/act

User space governor manages power for

workload/application overcomes root &

implementation of power control

4. Metrics visibility

Power control decision relies on Key Performance

Indicators (KPIs) specific to the application => not OS visible

5. Diversity between virtualised and host approach, write once run

anywhere not possible

6. Availability of Power controls in the guest

Overall benefit is to achieve residency in Low Power Modes, in this example

via slow down / P-state controls

Virtualized Approach

No direct access to OS Power Infrastructure for user space governors

Virtual Machine

User Space
Application

Linux Host Power Infrastructure e.g. cpufreq

CPU1 CPU2

VCPU1 VCPU2

CPU8CPU7

User Space Power
Governor

KPIs

Utilisation

Linux Guest OS

CPU0

VCPU0

sysfs/P-state

interface

Host
User Space
Application

/sysfs/…/..frequency
scaling_min & max

User Space Power
Governor

KPIs

Utilisation

Common Challenges

Components in a Solution (Simplified)

• User space governor manages power for workload/application

• Access to Power control relies on Key Performance Indicators (KPIs)
specific to the application

• Virtualised Power Controls requires a “custom” API, interface and
backend to get access

• Build components

• Custom P-state API for requests from Guest to Host

• Virtio-serial for transport guest => host

• Backend daemon / agent

• Backend module to interface to cpufreq / intel_pstate

• Latency range is single digit milli-seconds

• Opportunity

• Guest visible proxy sysfs/…/scaling min and max..frequency
requests, a future evolution for virtualised use cases?

• Backed by a simple precedence policy in the host kernel

Many use cases, support for direct control, virtualized architecture

Virtual Machine

User Space
Application

User Space Governor
Backend

Linux Host OS Power Infrastructure e.g. cpufreq

CPU0 CPU1

VCPU1 VCPU2

CPU7CPU6

User Space
Application

Custom API

Virtio-Serial

User Space Power
Governor

KPIs

Utilisation

/sysfs/…/..frequency
scaling_min & max

Linux Guest OS

CPU0

Custom API

Host

/sysfs/…/..frequency
scaling_min & max

User Space Power
Governor

KPIs

VCPU0

Summary & Discussion

• Why? Direct control path allows wider adoption and usage of power technology

• Opportunity to move away from ”custom” build to standard approach (APIs and driver for Guest OS)

• Guest OS driver for P-states?

• Increase adoption of lower power modes and reduce carbon footprint via lower electricity consumption

• Thank you!

	Slide 1
	Slide 2: Power Saving for Virtualised Workloads
	Slide 3: Energy Efficiency Opportunity
	Slide 4: Common Challenges
	Slide 5: Components in a Solution (Simplified)
	Slide 6: Summary & Discussion
	Slide 7

