
Make sync_state/handoff work
for the common clk framework

Background

clk_disable_unused

clk_disable_unused()

for all clks

if struct clk_ops::is_enabled() && !struct clk_core::enable_count

struct clk_ops::disable()

late_initcall_sync(clk_disable_unused)

Agenda

● Background

○ clk_disable_unused

○ Handoff

○ Use Cases

● Proposed Solutions

● Brainstorming

Background

Handoff

What clks are enabled and/or prepared when they are registered

with clk_register()?Agenda

● Background

○ clk_disable_unused

○ Handoff

○ Use Cases

● Proposed Solutions

● Brainstorming

A

B C

Background

Use Cases

● Boot splash screen maintained until display driver probes

● Save power by disabling clks that bootloader leaves enabled

● Save power by disabling clks for devices without a driver

Agenda

● Background

○ clk_disable_unused

○ Handoff

○ Use Cases

● Proposed Solutions

● Brainstorming

Proposed Solutions

Proposed Solutions

Add sync_state() support to clock framework [1]

If enabled at clk_register() hold that enable until clk_sync_state()

Was the clk registered with a struct device? If so, skip clk during disabling of unused

clks.

When sync_state logic triggers for a device, call clk_sync_state() which iterates over

the entire clk tree for any clks registered with that device and call struct

clk_ops::disable() if enabled and unused

Agenda

● Background

● Proposed Solutions

○ sync_state()

○ generic callback

○ CLK_HANDOFF

● Brainstorming

Proposed Solutions

Add sync_state() support to clock framework

Rejection Reasons
● Enables clks during registration when they’re already enabled

● Keeps clks enabled until sync_state stage (potentially long time)

● Relies on clks to be registered with struct device for sync_state() callback

● Increases software enable_count, leading to possible underflow issues of count

by other consumers

Agenda

● Background

● Proposed Solutions

○ sync_state()

○ generic callback

○ CLK_HANDOFF

● Brainstorming

Proposed Solutions

clk: Add generic sync_state callback for disabling unused clocks [2]

Mostly same as before, with some differences

● Don’t hold enable state from registration time

● Allow sync_state callback to be anything in case drivers want to override

Agenda

● Background

● Proposed Solutions

○ sync_state()

○ generic callback

○ CLK_HANDOFF

● Brainstorming

Proposed Solutions

clk: Add generic sync_state callback for disabling unused clocks

Rejection Reasons
● Avoids enabling clks at registration time

● Doesn’t keep clks enabled from boot (doesn’t solve hand off)

● Clks can be disabled in the middle of the tree affecting leafs with sync_state

● Relies on clks to be registered with struct device for sync_state() callback

Agenda

● Background

● Proposed Solutions

○ sync_state()

○ generic callback

○ CLK_HANDOFF

● Brainstorming

Proposed Solutions

CLK_ENABLE_HAND_OFF clk flag [3]

Add struct clk_core booleans needs_prepare_handoff and needs_enable_handoff

Add enable/prepare counts to struct clk

clk_enable()

struct clk::enable_count++

if struct clk_core::needs_enable_handoff

clear bool and return

clk_register()

if CLK_ENABLE_HAND_OFF

set bool to true, call clk_core_enable()

Agenda

● Background

● Proposed Solutions

○ sync_state()

○ generic callback

○ CLK_HANDOFF

● Brainstorming

Proposed Solutions

CLK_ENABLE_HAND_OFF clk flag

Rejection Reasons
● Requires marking clks with clk flag to opt-in

● Doesn’t check enable state to know if clk would like to opt in to flag

Agenda

● Background

● Proposed Solutions

○ sync_state()

○ generic callback

○ CLK_HANDOFF

● Brainstorming

Brainstorming

Brainstorming

What Do Other Frameworks Do?

Regulator

● Read hardware for enable state

● DT property for boot enabled

● Wait 30 seconds after late init and disable unused regulators

● Not usually a complex tree

○ 10s not 100s of regulators

○ Not always in a tree

Agenda

● Background

● Proposed Solutions

● Brainstorming

○ Other Frameworks

○ Kconfig

○ Hand off

○ Read Hardware

Brainstorming

What Do Other Frameworks Do?

Interconnect

● Scan DT and count number of interconnect providers during device_initcall

● Use sync_state() callback for interconnect providers

○ Framework mandates struct device during registration

● Iterate over all interconnects and drop bandwidth for unused ones once all

interconnect providers call sync_state API

Agenda

● Background

● Proposed Solutions

● Brainstorming

○ Other Frameworks

○ Kconfig

○ Hand off

○ Read Hardware

Brainstorming

Kconfig for clk_ignore_unused=true

● Make a config option to set clk_ignore_unused to true

● Don’t ever disable clks from the clk framework because we don’t know

when to do so

● Invert logic so that commandline is needed to opt-in to ignore unused

behavior when config enabled

Agenda

● Background

● Proposed Solutions

● Brainstorming

○ Other Frameworks

○ Kconfig

○ Hand off

○ Read Hardware

Brainstorming

Hand off enable state

● During registration, read enabled state, mark ‘boot_enabled’ flag if enabled

● During clk reparenting, migrate flag to parent if child is boot enabled

● clk_enable() checks flag and only increments count if boot_enabled

● clk_disable() checks flag and clears when enable count reaches zero

Agenda

● Background

● Proposed Solutions

● Brainstorming

○ Other Frameworks

○ Kconfig

○ Hand off

○ Read Hardware

Brainstorming

Hand off enable state - Problems

● When is it safe to disable clk in middle of tree?

● Need to special case CLK_OPS_PARENT_ENABLE

Agenda

● Background

● Proposed Solutions

● Brainstorming

○ Other Frameworks

○ Kconfig

○ Hand off

○ Read Hardware

Brainstorming

Stop Caching Hardware State

clk_enable()

if !struct clk_core::enable_count && struct clk_ops::is_enabled()

struct clk_core::enable_count++

return

Agenda

● Background

● Proposed Solutions

● Brainstorming

○ Other Frameworks

○ Kconfig

○ Hand off

○ Read Hardware

Proposed Solutions

Stop Caching Hardware State

● Simple to implement

● Doesn’t fix side swipe problem

● CLK_OPS_PARENT_ENABLE needs special care

○ Need to know where enable is coming from, provider or consumer

● Augment clk_core_is_enabled() to check children for enable state

recursively

○ Many clk drivers don’t implement is_enabled clk_op

Agenda

● Background

● Proposed Solutions

● Brainstorming

○ Kconfig

○ Hand off

○ Read Hardware

References

[1] https://lore.kernel.org/r/20210407034456.516204-1-saravanak@google.com

[2] https://lore.kernel.org/r/20221227204528.1899863-1-abel.vesa@linaro.org

[3] https://lore.kernel.org/r/1455225554-13267-1-git-send-email-mturquette@baylibre.com

https://lore.kernel.org/r/20210407034456.516204-1-saravanak@google.com
https://lore.kernel.org/r/20221227204528.1899863-1-abel.vesa@linaro.org
https://lore.kernel.org/r/1455225554-13267-1-git-send-email-mturquette@baylibre.com

