
klint:
Compile-time Detection of Atomic Context
Violations for Kernel Rust Code

Gary Guo

Rust MC, Linux Plumbers Conference, 15 Nov 2023

Safety of Rust

• Soundness Property:
• Safe Rust can't cause Undefined Behaviour

Safety of Rust

• Soundness Property:
• Safe Rust can't cause Undefined Behaviour

• Undefined Behaviour includes:
• Dereference dangling, null or unaligned pointer (e.g. use-after-free)

• Buffer overrun

• Data races

• Break alias rule

• …

Safety of Rust

• Soundness Property:
• Safe Rust can't cause Undefined Behaviour

• Undefined Behaviour includes:
• Dereference dangling, null or unaligned pointer (e.g. use-after-free)

• Buffer overrun

• Data races

• Break alias rule

• …

• What’s considered safe:
• Memory leak

• Deadlock

• Panic (kernel BUG) or abort (kernel panic)

Some Bad Code

• Some obviously bad code:

• This can happen by accident.

• There’s no compile-time guarantee that this won’t happen.

spin_lock(&lock);
...
mutex_lock(&mutex);
...
spin_unlock(&lock);

Some Bad Code

• Some obviously bad code:

• This can happen by accident.

• There’s no compile-time guarantee that this won’t happen.

• Is this “safe”?

spin_lock(&lock);
...
mutex_lock(&mutex);
...
spin_unlock(&lock);

Some Bad Code

• Some obviously bad code:

• This can happen by accident.

• There’s no compile-time guarantee that this won’t happen.

• Is this “safe”?

• Yes, deadlock can happen, but it’s “safe”!

spin_lock(&lock);
...
mutex_lock(&mutex);
...
spin_unlock(&lock);

Some Bad Code

• How about this:

• Is this “safe”?

rcu_read_lock();
...
schedule();
...
rcu_read_unlock();

Read-copy-update (RCU) in Kernel

• This is a very simplified RCU use case

• What does this compile to?

/* CPU 0 */ /* CPU 1 */
rcu_read_lock();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);
 synchronize_rcu();
 /* waiting for RCU read to finish */
rcu_read_unlock();
 /* synchronize_rcu() returns */
 /* destruct and free old_ptr */

Read-copy-update (RCU) in Kernel

• If CONFIG_PREEMPT_RCU is off

/* CPU 0 */ /* CPU 1 */
preempt_disable();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);
 synchronize_rcu();
 /* waiting for RCU read to finish */
preempt_enable();
 /* synchronize_rcu() returns */
 /* destruct and free old_ptr */

Read-copy-update (RCU) in Kernel

• If CONFIG_PREEMPT_RCU is off

• If CONFIG_PREEMPT_COUNT is off

/* CPU 0 */ /* CPU 1 */
barrier();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);
 synchronize_rcu();
 /* waiting for RCU read to finish */
barrier();
 /* synchronize_rcu() returns */
 /* destruct and free old_ptr */

Read-copy-update (RCU) in Kernel

• If CONFIG_PREEMPT_RCU is off

• If CONFIG_PREEMPT_COUNT is off

• No code is being generated for RCU read/unlock

/* CPU 0 */ /* CPU 1 */
barrier();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);
 synchronize_rcu();
 /* waiting for RCU read to finish */
barrier();
 /* synchronize_rcu() returns */
 /* destruct and free old_ptr */

Read-copy-update (RCU) in Kernel

• synchronize_rcu returns after context switch has happened on all
CPUs

/* CPU 0 */ /* CPU 1 */
barrier();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);
 synchronize_rcu();
 /* waiting for RCU read to finish */
barrier();
 /* synchronize_rcu() returns */
 /* destruct and free old_ptr */

Read-copy-update (RCU) in Kernel

• synchronize_rcu returns after context switch has happened on all
CPUs

• This works by assuming that context switch will not happen in RCU
read-side critical section.

/* CPU 0 */ /* CPU 1 */
barrier();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
/* use ptr */ rcu_assign_pointer(v, new_ptr);
 synchronize_rcu();
 /* waiting for RCU read to finish */
barrier();
 /* synchronize_rcu() returns */
 /* destruct and free old_ptr */

Revisit the Bad Code

• Sleep inside RCU read-side critical section breaks assumption of
synchronize_rcu

/* CPU 0 */ /* CPU 1 */
rcu_read_lock();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
 rcu_assign_pointer(v, new_ptr);
 synchronize_rcu();
schedule(); /* synchronize_rcu returns */
 /* destruct and free old_ptr */
/* use ptr after free! */
rcu_read_unlock();

Revisit the Bad Code

• Sleep inside RCU read-side critical section breaks assumption of
synchronize_rcu

• This causes use-after-free, an undefined behaviour

/* CPU 0 */ /* CPU 1 */
rcu_read_lock();
ptr = rcu_dereference(v); old_ptr = rcu_access_pointer(v);
 rcu_assign_pointer(v, new_ptr);
 synchronize_rcu();
schedule(); /* synchronize_rcu returns */
 /* destruct and free old_ptr */
/* use ptr after free! */
rcu_read_unlock();

Implication

• Atomic context violation does not only cause deadlock, but can cause
memory safety issue.

Implication

• Atomic context violation does not only cause deadlock, but can cause
memory safety issue.

• So not sleep inside atomic context is not only a correctness requirement,
it’s also a safety requirement.

Implication

• Atomic context violation does not only cause deadlock, but can cause
memory safety issue.

• So not sleep inside atomic context is not only a correctness requirement,
it’s also a safety requirement.

• This is fine for C, since there’s no distinction between safe and unsafe.

Implication

• Atomic context violation does not only cause deadlock, but can cause
memory safety issue.

• So not sleep inside atomic context is not only a correctness requirement,
it’s also a safety requirement.

• This is fine for C, since there’s no distinction between safe and unsafe.

• But combining this with the soundness property of Rust, this means
• We must not design a safe API that allows Rust kernel code to sleep inside atomic

context.

Possible solution: make sleep unsafe

• The issue disappears if we make sleep unsafe.

• Obviously a bad idea.

Possible solution: token types

• A common pattern in Rust is to represent capabilities with token types:

trait Context {}
struct Atomic;
struct Process;
impl Context for Atomic {}
impl Context for Process {}
fn sleep(token: &mut Process);
impl Spinlock {
 fn lock(
 &self,
 context: &mut impl Context,
 callback: impl FnOnce(&mut Atomic, Guard<'_>)
);
}

Assert the capability to sleep

Take away the current capability

Grant a restricted capability
that does not permit sleeping

Possible solution: dynamic check

• In preemptible kernel, we already have a runtime pre-emption count.

• Before any context switch, we can check that count.

• This is CONFIG_DEBUG_ATOMIC_SLEEP.

• This however has a runtime overhead.

Possible solution: just ignore it

• Use a normal API design.

• Just trust the developer.

• Use lockdep/DEBUG_ATOMIC_SLEEP to find bug during development.

• This is unsound.

Choose two

Soundness

No Runtime Cost Ergonomic API

Token Types Runtime Check

Ignore It

Choose two three

Soundness

No Runtime Cost Ergonomic API

Token Types Runtime Check

Ignore It

klint

Rationale

• Our need does not fit into Rust safety model
• (Without complex typesystem dancing or runtime check)

Rationale

• Our need does not fit into Rust safety model
• (Without complex typesystem dancing or runtime check)

• But we can extend the compiler to provide what we need.
• Servo also uses custom plugin to compiler to ensure proper GC rooting.

Rationale

• Our need does not fit into Rust safety model
• (Without complex typesystem dancing or runtime check)

• But we can extend the compiler to provide what we need.
• Servo also uses custom plugin to compiler to ensure proper GC rooting.

• Check atomic context misuse during compilation time, as extensive as
possible.

• For the ones that can’t be checked, provide escape hatch so that developer
can override with runtime check or “unsafe”.

klint: Design Goals

• Simple rule: easy to explain and understand

• Provide useful diagnostics

• Provide escape hatch to give developer full control when necessary

• A sane default that requires little annotation

• Fast: need to be feasible to run on every compilation

klint: The Rule

• Each function is given two properties:
• The adjustment to the preemption count after calling the function.

• The expected value of preemption count allowed when calling the function.

• klint tracks possible preemption count at each location as if
preempt_count() is enabled.

• As an approximation, adjustment must be an integer, and expected value
must be a range.

• Examples:
• spin_lock or rcu_read_lock adjusts by 1 and expect [0, ∞)

• spin_unlock or rcu_read_unlock adjusts by -1 and expects [1, ∞)

• Mutex operations adjusts by 0 and expects [0, 1)

Annotation

#[klint::preempt_count(adjust = 1, expect = 0.., unchecked)]
pub fn rcu_read_lock() -> RcuReadGuard { /* ... */ }

#[klint::drop_preempt_count(adjust = -1, expect = 1.., unchecked)]
struct RcuReadGuard { /* ... */ }

#[klint::preempt_count(adjust = 0, expect = 0, unchecked)]
pub fn schedule() { /* ... */ }

#[klint::preempt_count(expect = 0..)]
pub fn callable_from_atomic_context() { /* ... */ }

Unchecked annotation

Checked annotation

Inference

• Inference works in majority of cases, eliminating the need for annotation.

Inference

• Inference works in majority of cases, eliminating the need for annotation.

• For generic functions, each monomorphised instance are inferred
separately.

Inference

• Inference works in majority of cases, eliminating the need for annotation.

• For generic functions, each monomorphised instance are inferred
separately.

• Exceptions:
• FFI boundaries

• Recursion functions

• Indirect function calls (function pointers, trait objects)
• For trait object, trait methods can be annotated

Case Study

• klint was tested on rust branch

• Inference works for most functions, annotation only required on the
ArcWake trait.

Case Study

• The wake functions are called from wake_up and therefore can’t
sleep.

pub trait ArcWake: Send + Sync {
 /// Wakes a task up.
 #[klint::preempt_count(expect = 0..)]
 fn wake_by_ref(self: ArcBorrow<'_, Self>);

 /// Wakes a task up and consumes a reference.
 #[klint::preempt_count(expect = 0..)]
 fn wake(self: Arc<Self>) {
 self.as_arc_borrow().wake_by_ref();
 }
}

Case Study

• The wake functions are called from wake_up and therefore can’t
sleep.

• And it turns out this exact annotation catches a bug.

pub trait ArcWake: Send + Sync {
 /// Wakes a task up.
 #[klint::preempt_count(expect = 0..)]
 fn wake_by_ref(self: ArcBorrow<'_, Self>);

 /// Wakes a task up and consumes a reference.
 #[klint::preempt_count(expect = 0..)]
 fn wake(self: Arc<Self>) {
 self.as_arc_borrow().wake_by_ref();
 }
}

error: trait method annotated to have preemption count expectation of 0..
 --> rust/kernel/kasync/executor/workqueue.rs:147:5
 |

147 | fn wake(self: Arc<Self>) {
 | ^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: but the expectation of this implementing function is 0

note: the trait method is defined here
 --> rust/kernel/kasync/executor.rs:73:5
 |

73 | fn wake(self: Arc<Self>) {
 | ^^^^^^^^^^^^^^^^^^^^^^^^
note: which may drop type `kernel::sync::Arc<kernel::kasync::executor::workqueue::Task<core::future::from_generator::GenFuture<[static
generator@samples/rust/rust_echo_server.rs:25:75: 31:2]>>>` with preemption count 0..
 --> rust/kernel/kasync/executor/workqueue.rs:149:5
 |

147 | fn wake(self: Arc<Self>) {
 | ---- value being dropped is here

148 | Self::wake_by_ref(self.as_arc_borrow());
149 | }
 | ^

<snip>
note: which may drop type `kernel::sync::arc::ArcInner<kernel::kasync::executor::workqueue::Executor>` with preemption count 0..

--> rust/kernel/sync/arc.rs:255:22
 |

255 | unsafe { core::ptr::drop_in_place(inner) };
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 = note: which may drop type `kernel::kasync::executor::workqueue::Executor` with preemption count 0..
 = note: which may drop type `kernel::Either<kernel::workqueue::BoxedQueue, &kernel::workqueue::Queue>` with preemption count 0..
 = note: which may drop type `kernel::workqueue::BoxedQueue` with preemption count 0..

note: which may call this function with preemption count 0..
 --> rust/kernel/workqueue.rs:433:5

|
433 | fn drop(&mut self) {
 | ^^^^^^^^^^^^^^^^^^
 = note: but this function expects preemption count 0

Current Limitation

• Conditional spinlock acquisition is currently not representable in klint.

impl<T> SpinLock<T> {
 // Preemption count adjustment of this function is 0 or 1
depending on the variant of the return value.
 fn try_lock(&self) -> Option<Guard<'_>> { ... }
}

Current Limitation

• Conditional spinlock acquisition is currently not representable in klint.

• Possibly in the future?

impl<T> SpinLock<T> {
 // Preemption count adjustment of this function is 0 or 1
depending on the variant of the return value.
 fn try_lock(&self) -> Option<Guard<'_>> { ... }
}

impl<T> SpinLock<T> {
 #[klint::preempt_count(adjust =
 match return { Some(_) => 1, None => 0 }
)]
 fn try_lock(&self) -> Option<Guard<'_>> { ... }
}

Current Limitation

• klint doesn’t currently reason about variable values.

• So data dependant lock acquisition also doesn’t work.

fn foo(take_lock: bool) {
 if take_lock {
 spin_lock(...);
 }
 ...
 if take_lock {
 spin_unlock(...);
 }
}

klint can’t yet tell that preemption count is always going to restored

Current Limitation

• klint doesn’t currently reason about variable values.

• This includes drop flags, so this code also doesn’t compile under klint.

fn foo(take_lock: bool) {
 let guard;
 // An implicit bool will be introduced here by the compiler
to track if `guard` is initialised
 if take_lock {
 guard = SPINLOCK.lock();
 }
 ...
 // An implicit branch will be introduced here by the compiler
to drop `guard` only if it has been initialised
}

klint can’t yet tell that preemption count is always going to restored

Current Limitation

fn foo(x: Option<Guard>) -> Option<Guard> {
 if let Some(x) = x {
 return Some(x);
 }
 None
}

Current Limitation

fn foo(x: Option<Guard>) -> Option<Guard> {
 if x.is_some() {
 return (x as Some).0;
 }
 drop(x); // <- rustc generates this since `x` needs drop
 // this drops `Option<Guard>`, so may drop `Guard`!
 None
}

fn foo(x: Option<Guard>) -> Option<Guard> {
 if let Some(x) = x {
 return Some(x);
 }
 None
}

Current Limitation

fn foo(x: Option<Guard>) -> Option<Guard> {
 if x.is_some() {
 return (x as Some).0;
 }
 drop(x); // <- rustc generates this since `x` needs drop
 // this drops `Option<Guard>`, so may drop `Guard`!
 None
}

fn foo(x: Option<Guard>) -> Option<Guard> {
 if let Some(x) = x {
 return Some(x);
 }
 None
}

This is currently blocking klint from wider testing

Questions

https://github.com/rust-for-linux/klint

Links

• Repository:
• https://github.com/rust-for-linux/klint

• For implementation details: refer to Kangrejos slides:
• https://kangrejos.com/2023/Klint:%20Compile-

time%20Detection%20of%20Atomic%20Context%20Violations%20for%20Kernel%2
0Rust%20Code.pdf

• Servo’s GC rooting:
• https://github.com/servo/servo/tree/master/components/script_plugins

https://github.com/rust-for-linux/klint
https://kangrejos.com/2023/Klint: Compile-time Detection of Atomic Context Violations for Kernel Rust Code.pdf
https://kangrejos.com/2023/Klint: Compile-time Detection of Atomic Context Violations for Kernel Rust Code.pdf
https://kangrejos.com/2023/Klint: Compile-time Detection of Atomic Context Violations for Kernel Rust Code.pdf
https://github.com/servo/servo/tree/master/components/script_plugins

	Slide 1: klint: Compile-time Detection of Atomic Context Violations for Kernel Rust Code
	Slide 2: Safety of Rust
	Slide 3: Safety of Rust
	Slide 4: Safety of Rust
	Slide 5: Some Bad Code
	Slide 6: Some Bad Code
	Slide 7: Some Bad Code
	Slide 8: Some Bad Code
	Slide 9: Read-copy-update (RCU) in Kernel
	Slide 10: Read-copy-update (RCU) in Kernel
	Slide 11: Read-copy-update (RCU) in Kernel
	Slide 12: Read-copy-update (RCU) in Kernel
	Slide 13: Read-copy-update (RCU) in Kernel
	Slide 14: Read-copy-update (RCU) in Kernel
	Slide 15: Revisit the Bad Code
	Slide 16: Revisit the Bad Code
	Slide 17: Implication
	Slide 18: Implication
	Slide 19: Implication
	Slide 20: Implication
	Slide 21: Possible solution: make sleep unsafe
	Slide 22: Possible solution: token types
	Slide 23: Possible solution: dynamic check
	Slide 24: Possible solution: just ignore it
	Slide 25: Choose two
	Slide 26: Choose two three
	Slide 27: Rationale
	Slide 28: Rationale
	Slide 29: Rationale
	Slide 30: klint: Design Goals
	Slide 31: klint: The Rule
	Slide 32: Annotation
	Slide 33: Inference
	Slide 34: Inference
	Slide 35: Inference
	Slide 36: Case Study
	Slide 37: Case Study
	Slide 38: Case Study
	Slide 39
	Slide 40: Current Limitation
	Slide 41: Current Limitation
	Slide 42: Current Limitation
	Slide 43: Current Limitation
	Slide 44: Current Limitation
	Slide 45: Current Limitation
	Slide 46: Current Limitation
	Slide 47: Questions
	Slide 48: Links

