
1

Moving forward with Rust in 
V4L2

Daniel Almeida
Consultant Software Engineer, Collabora
daniel.almeida@collabora.com



2

What has been done so far?



3

What we have so far
● Abstractions for some V4L2 data types
● A *very* thin videobuf2 abstraction (you can create a queue)
● Abstractions for some VIDIOC_* ioctls
● The necessary code to get the driver to probe
● A module that prints to the terminal when processing some 

of the VIDIOC_* ioctls



4

Why we should experiment with 
Rust in V4L2?



5

Why Rust?
● V4L2 takes in *a lot* of untrusted data from userland
● Rust can help mitigate this problem at compile time
● There are low-risk components to experiment with
● This gives maintainers the time to evaluate whether Rust 

works for the subsystem



6

I discussed this topic during the 
Media Summit 2023



7

Roadblocks and feedback



8

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is



9

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers



10

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers
● There are long-standing issues with some C frameworks (e.g. 

media controller lifetime issues)



11

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers
● There are long-standing issues with some C frameworks (e.g. 

media controller lifetime issues)
● Huge fear of breaking existing C code



12

Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers
● There are long-standing issues with some C frameworks (e.g. 

media controller lifetime issues)
● Huge fear of breaking existing C code
● There must be more contributors working on this



13

We want to unblock this effort



14

Which is why we are proposing a 
virtual stateless codec driver in 
Rust



15

We already have a similar driver 
in C



16

Virtual stateless codec driver
● Requires adding Rust abstractions for important 

components in V4L2
● Not much more effort to write a driver for real hardware!
● Shows the community how a V4L2 Rust driver will look like
● This is not a critical component, just another driver
● Maintainers will have actual code to judge



17

Eventually, the Rust driver can 
replace visl



18

Open questions
● What happens if the C API is changed and it breaks the Rust 

bindings? Can we detect automatically?

– Maybe CONFIG_MEDIA_EXPERIMENTAL to buy time?
● Collabora-maintained branch? Is this helpful?
● Anything else we can do to drive this?



19

Feedback?



20

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

