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What has been done so far?
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What we have so far
● Abstractions for some V4L2 data types
● A *very* thin videobuf2 abstraction (you can create a queue)
● Abstractions for some VIDIOC_* ioctls
● The necessary code to get the driver to probe
● A module that prints to the terminal when processing some 

of the VIDIOC_* ioctls
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Why we should experiment with 
Rust in V4L2?
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Why Rust?
● V4L2 takes in *a lot* of untrusted data from userland
● Rust can help mitigate this problem at compile time
● There are low-risk components to experiment with
● This gives maintainers the time to evaluate whether Rust 

works for the subsystem
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I discussed this topic during the 
Media Summit 2023
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Roadblocks and feedback
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Roadblocks and feedback
● V4L2 can’t keep up with the workload as is
● Not enough reviews and maintainers
● There are long-standing issues with some C frameworks (e.g. 

media controller lifetime issues)
● Huge fear of breaking existing C code
● There must be more contributors working on this
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We want to unblock this effort
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Which is why we are proposing a 
virtual stateless codec driver in 
Rust
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We already have a similar driver 
in C
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Virtual stateless codec driver
● Requires adding Rust abstractions for important 

components in V4L2
● Not much more effort to write a driver for real hardware!
● Shows the community how a V4L2 Rust driver will look like
● This is not a critical component, just another driver
● Maintainers will have actual code to judge
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Eventually, the Rust driver can 
replace visl
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Open questions
● What happens if the C API is changed and it breaks the Rust 

bindings? Can we detect automatically?

– Maybe CONFIG_MEDIA_EXPERIMENTAL to buy time?
● Collabora-maintained branch? Is this helpful?
● Anything else we can do to drive this?
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Feedback?
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Thank you!
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