
pin-init: Solving Address Stability in Rust

Benno Lossin <benno.lossin@proton.me>

15. November 2023

Benno Lossin <benno.lossin@proton.me> 1

Initialization and Address Stability
A Motivation for Rust
Address Stability in the Kernel
Address Stability Support in Rust
A Problem with Initialization
The Solution: pin-init

Field Projections
Field Projections
The Problem with Pin<P>
A possible solution: Pin-Projections
Other Kinds of Field Projections

Benno Lossin <benno.lossin@proton.me> 2

A Motivation for Rust
Initialization should not be that hard...

$ git log --oneline --since 2023-01-01 | grep 'fix.*uninitialized'

cca202a5e595 fbdev: hyperv_fb: fix uninitialized local variable use
fc12a722e6b7 exfat: fix setting uninitialized time to ctime/atime
2a76e7679b59 media: platform: mtk-mdp3: fix uninitialized variable in mdp_path_config()
8f8abb863fa5 net: usb: dm9601: fix uninitialized variable use in dm9601_mdio_read
72151ad0cba8 ASoC: codecs: wsa-macro: fix uninitialized stack variables with name prefix
9147b9ded499 btrfs: fix some -Wmaybe-uninitialized warnings in ioctl.c
e10a35abb3da net: ethernet: mtk_eth_soc: fix uninitialized variable
1c9fd080dffe kunit: fix uninitialized variables bug in attributes filtering
13a0d1088c8f power: supply: qcom_pmi8998_charger: fix uninitialized variable
222a6c42e9ef octeontx2-af: Initialize 'cntr_val' to fix uninitialized symbol error
8362bf82fb54 Input: mcs-touchkey - fix uninitialized use of error in mcs_touchkey_probe()
f72207a5c0db netdevsim: fix uninitialized data in nsim_dev_trap_fa_cookie_write()
f61d2d5cf142 sfc: fix uninitialized variable use
97deb66ed4f9 selftests/mm: fix a "possibly uninitialized" warning in pkey-x86.h
df14afeed2e6 ksmbd: fix uninitialized pointer read in smb2_create_link()
48b47f0caaa8 ksmbd: fix uninitialized pointer read in ksmbd_vfs_rename()
8fd9f4232d81 btrfs: fix an uninitialized variable warning in btrfs_log_inode
0d9b41daa590 nfc: llcp: fix possible use of uninitialized variable in nfc_llcp_send_connect()
714dd3c29a22 phy: mediatek: hdmi: mt8195: fix uninitialized variable usage in pll_calc
8ba7d5f5ba93 btrfs: fix uninitialized variable warnings
c17caf0ba3aa f2fs: fix uninitialized skipped_gc_rwsem
08570b7c8db6 gpu: host1x: fix uninitialized variable use
e88adb4ac27a drm/rockchip: vop2: fix uninitialized variable possible_crtcs
05107edc9101 selftests: sigaltstack: fix -Wuninitialized
7d31677bb7b1 gpu: host1x: fix uninitialized variable use
dc934c183d43 accel/habanalabs: fix a maybe-uninitialized compilation warnings
...

Benno Lossin <benno.lossin@proton.me> 3

A Motivation for Rust
Initialization should not be that hard...
$ git log --oneline --since 2023-01-01 | grep 'fix.*uninitialized'

cca202a5e595 fbdev: hyperv_fb: fix uninitialized local variable use
fc12a722e6b7 exfat: fix setting uninitialized time to ctime/atime
2a76e7679b59 media: platform: mtk-mdp3: fix uninitialized variable in mdp_path_config()
8f8abb863fa5 net: usb: dm9601: fix uninitialized variable use in dm9601_mdio_read
72151ad0cba8 ASoC: codecs: wsa-macro: fix uninitialized stack variables with name prefix
9147b9ded499 btrfs: fix some -Wmaybe-uninitialized warnings in ioctl.c
e10a35abb3da net: ethernet: mtk_eth_soc: fix uninitialized variable
1c9fd080dffe kunit: fix uninitialized variables bug in attributes filtering
13a0d1088c8f power: supply: qcom_pmi8998_charger: fix uninitialized variable
222a6c42e9ef octeontx2-af: Initialize 'cntr_val' to fix uninitialized symbol error
8362bf82fb54 Input: mcs-touchkey - fix uninitialized use of error in mcs_touchkey_probe()
f72207a5c0db netdevsim: fix uninitialized data in nsim_dev_trap_fa_cookie_write()
f61d2d5cf142 sfc: fix uninitialized variable use
97deb66ed4f9 selftests/mm: fix a "possibly uninitialized" warning in pkey-x86.h
df14afeed2e6 ksmbd: fix uninitialized pointer read in smb2_create_link()
48b47f0caaa8 ksmbd: fix uninitialized pointer read in ksmbd_vfs_rename()
8fd9f4232d81 btrfs: fix an uninitialized variable warning in btrfs_log_inode
0d9b41daa590 nfc: llcp: fix possible use of uninitialized variable in nfc_llcp_send_connect()
714dd3c29a22 phy: mediatek: hdmi: mt8195: fix uninitialized variable usage in pll_calc
8ba7d5f5ba93 btrfs: fix uninitialized variable warnings
c17caf0ba3aa f2fs: fix uninitialized skipped_gc_rwsem
08570b7c8db6 gpu: host1x: fix uninitialized variable use
e88adb4ac27a drm/rockchip: vop2: fix uninitialized variable possible_crtcs
05107edc9101 selftests: sigaltstack: fix -Wuninitialized
7d31677bb7b1 gpu: host1x: fix uninitialized variable use
dc934c183d43 accel/habanalabs: fix a maybe-uninitialized compilation warnings
...

Benno Lossin <benno.lossin@proton.me> 3

A Motivation for Rust

I Rust can help to avoid all of these patches.

I The compiler will statically check for correctness and reject
bad code with compile errors.

I But an escape hatch is sometimes needed.
=⇒ unsafe code is this escape hatch.

I But unsafe code has its own problems:
I Similar to C code it’s easy to make mistakes.
I Allows unchecked operations that the programmer needs to

take care of.
I Needs more careful review.

=⇒ try to avoid unsafe code.

Benno Lossin <benno.lossin@proton.me> 4

A Motivation for Rust

I Rust can help to avoid all of these patches.
I The compiler will statically check for correctness and reject

bad code with compile errors.

I But an escape hatch is sometimes needed.
=⇒ unsafe code is this escape hatch.

I But unsafe code has its own problems:
I Similar to C code it’s easy to make mistakes.
I Allows unchecked operations that the programmer needs to

take care of.
I Needs more careful review.

=⇒ try to avoid unsafe code.

Benno Lossin <benno.lossin@proton.me> 4

A Motivation for Rust

I Rust can help to avoid all of these patches.
I The compiler will statically check for correctness and reject

bad code with compile errors.
I But an escape hatch is sometimes needed.

=⇒ unsafe code is this escape hatch.
I But unsafe code has its own problems:

I Similar to C code it’s easy to make mistakes.
I Allows unchecked operations that the programmer needs to

take care of.
I Needs more careful review.

=⇒ try to avoid unsafe code.

Benno Lossin <benno.lossin@proton.me> 4

A Motivation for Rust

I Rust can help to avoid all of these patches.
I The compiler will statically check for correctness and reject

bad code with compile errors.
I But an escape hatch is sometimes needed.

=⇒ unsafe code is this escape hatch.

I But unsafe code has its own problems:
I Similar to C code it’s easy to make mistakes.
I Allows unchecked operations that the programmer needs to

take care of.
I Needs more careful review.

=⇒ try to avoid unsafe code.

Benno Lossin <benno.lossin@proton.me> 4

A Motivation for Rust

I Rust can help to avoid all of these patches.
I The compiler will statically check for correctness and reject

bad code with compile errors.
I But an escape hatch is sometimes needed.

=⇒ unsafe code is this escape hatch.
I But unsafe code has its own problems:

I Similar to C code it’s easy to make mistakes.
I Allows unchecked operations that the programmer needs to

take care of.
I Needs more careful review.

=⇒ try to avoid unsafe code.

Benno Lossin <benno.lossin@proton.me> 4

A Motivation for Rust

I Rust can help to avoid all of these patches.
I The compiler will statically check for correctness and reject

bad code with compile errors.
I But an escape hatch is sometimes needed.

=⇒ unsafe code is this escape hatch.
I But unsafe code has its own problems:

I Similar to C code it’s easy to make mistakes.

I Allows unchecked operations that the programmer needs to
take care of.

I Needs more careful review.
=⇒ try to avoid unsafe code.

Benno Lossin <benno.lossin@proton.me> 4

A Motivation for Rust

I Rust can help to avoid all of these patches.
I The compiler will statically check for correctness and reject

bad code with compile errors.
I But an escape hatch is sometimes needed.

=⇒ unsafe code is this escape hatch.
I But unsafe code has its own problems:

I Similar to C code it’s easy to make mistakes.
I Allows unchecked operations that the programmer needs to

take care of.

I Needs more careful review.
=⇒ try to avoid unsafe code.

Benno Lossin <benno.lossin@proton.me> 4

A Motivation for Rust

I Rust can help to avoid all of these patches.
I The compiler will statically check for correctness and reject

bad code with compile errors.
I But an escape hatch is sometimes needed.

=⇒ unsafe code is this escape hatch.
I But unsafe code has its own problems:

I Similar to C code it’s easy to make mistakes.
I Allows unchecked operations that the programmer needs to

take care of.
I Needs more careful review.

=⇒ try to avoid unsafe code.

Benno Lossin <benno.lossin@proton.me> 4

A Motivation for Rust

I Rust can help to avoid all of these patches.
I The compiler will statically check for correctness and reject

bad code with compile errors.
I But an escape hatch is sometimes needed.

=⇒ unsafe code is this escape hatch.
I But unsafe code has its own problems:

I Similar to C code it’s easy to make mistakes.
I Allows unchecked operations that the programmer needs to

take care of.
I Needs more careful review.

=⇒ try to avoid unsafe code.

Benno Lossin <benno.lossin@proton.me> 4

Address Stability in the Kernel

Why is address stability needed in the Kernel?

I Several data structures such as linked lists need to have a
stable address, because other structures have pointers to it.

prev

next

list_head

Benno Lossin <benno.lossin@proton.me> 5

Address Stability in the Kernel

Why is address stability needed in the Kernel?
I Several data structures such as linked lists need to have a

stable address, because other structures have pointers to it.

prev

next

list_head

Benno Lossin <benno.lossin@proton.me> 5

Address Stability in the Kernel

Why is address stability needed in the Kernel?
I Several data structures such as linked lists need to have a

stable address, because other structures have pointers to it.

prev

next

list_head

prev

next

list_head

Benno Lossin <benno.lossin@proton.me> 5

Address Stability in the Kernel

Why is address stability needed in the Kernel?
I Several data structures such as linked lists need to have a

stable address, because other structures have pointers to it.

prev

next

list_head

prev

next

list_head

Benno Lossin <benno.lossin@proton.me> 5

Address Stability in the Kernel

Why is address stability needed in the Kernel?
I Several data structures such as linked lists need to have a

stable address, because other structures have pointers to it.

prev

next

list_head

Benno Lossin <benno.lossin@proton.me> 5

Address Stability Support in Rust

I All types are moveable.

I Moves are common and frequent.
I Pointers can be pinned by wrapping them in Pin<P>

for example: Pin<&mut T>.
=⇒ pointee has a stable address until dropped

I How does the compiler ensure that no moves happen?

fn swap<T>(a: &mut T, b: &mut T);

=⇒ cannot give access to &mut T from Pin<&mut T>

Benno Lossin <benno.lossin@proton.me> 6

Address Stability Support in Rust

I All types are moveable.
I Moves are common and frequent.

I Pointers can be pinned by wrapping them in Pin<P>
for example: Pin<&mut T>.
=⇒ pointee has a stable address until dropped

I How does the compiler ensure that no moves happen?

fn swap<T>(a: &mut T, b: &mut T);

=⇒ cannot give access to &mut T from Pin<&mut T>

Benno Lossin <benno.lossin@proton.me> 6

Address Stability Support in Rust

I All types are moveable.
I Moves are common and frequent.
I Pointers can be pinned by wrapping them in Pin<P>

for example: Pin<&mut T>.
=⇒ pointee has a stable address until dropped

I How does the compiler ensure that no moves happen?

fn swap<T>(a: &mut T, b: &mut T);

=⇒ cannot give access to &mut T from Pin<&mut T>

Benno Lossin <benno.lossin@proton.me> 6

Address Stability Support in Rust

I All types are moveable.
I Moves are common and frequent.
I Pointers can be pinned by wrapping them in Pin<P>

for example: Pin<&mut T>.

=⇒ pointee has a stable address until dropped
I How does the compiler ensure that no moves happen?

fn swap<T>(a: &mut T, b: &mut T);

=⇒ cannot give access to &mut T from Pin<&mut T>

Benno Lossin <benno.lossin@proton.me> 6

Address Stability Support in Rust

I All types are moveable.
I Moves are common and frequent.
I Pointers can be pinned by wrapping them in Pin<P>

for example: Pin<&mut T>.
=⇒ pointee has a stable address until dropped

I How does the compiler ensure that no moves happen?

fn swap<T>(a: &mut T, b: &mut T);

=⇒ cannot give access to &mut T from Pin<&mut T>

Benno Lossin <benno.lossin@proton.me> 6

Address Stability Support in Rust

I All types are moveable.
I Moves are common and frequent.
I Pointers can be pinned by wrapping them in Pin<P>

for example: Pin<&mut T>.
=⇒ pointee has a stable address until dropped

I How does the compiler ensure that no moves happen?

fn swap<T>(a: &mut T, b: &mut T);

=⇒ cannot give access to &mut T from Pin<&mut T>

Benno Lossin <benno.lossin@proton.me> 6

Address Stability Support in Rust

I All types are moveable.
I Moves are common and frequent.
I Pointers can be pinned by wrapping them in Pin<P>

for example: Pin<&mut T>.
=⇒ pointee has a stable address until dropped

I How does the compiler ensure that no moves happen?

fn swap<T>(a: &mut T, b: &mut T);

=⇒ cannot give access to &mut T from Pin<&mut T>

Benno Lossin <benno.lossin@proton.me> 6

Address Stability Support in Rust

I All types are moveable.
I Moves are common and frequent.
I Pointers can be pinned by wrapping them in Pin<P>

for example: Pin<&mut T>.
=⇒ pointee has a stable address until dropped

I How does the compiler ensure that no moves happen?

fn swap<T>(a: &mut T, b: &mut T);

=⇒ cannot give access to &mut T from Pin<&mut T>

Benno Lossin <benno.lossin@proton.me> 6

A Problem with Initialization

Consider this bad piece of C code:

struct list_head new_list_head(void) {
struct list_head head;
head.next = &head;
head.prev = &head;
return head;

}

I Rust needs to prevent the equivalent code from compiling.
I To find a solution in Rust, we take a look at the C solution:

void init_list_head(struct list_head* head) {
head->prev = head;
head->next = head;

}

Benno Lossin <benno.lossin@proton.me> 7

A Problem with Initialization
Consider this bad piece of C code:

struct list_head new_list_head(void) {
struct list_head head;
head.next = &head;
head.prev = &head;
return head;

}

I Rust needs to prevent the equivalent code from compiling.
I To find a solution in Rust, we take a look at the C solution:

void init_list_head(struct list_head* head) {
head->prev = head;
head->next = head;

}

Benno Lossin <benno.lossin@proton.me> 7

A Problem with Initialization
Consider this bad piece of C code:

struct list_head new_list_head(void) {
struct list_head head;
head.next = &head;
head.prev = &head;
return head;

}

I Rust needs to prevent the equivalent code from compiling.

I To find a solution in Rust, we take a look at the C solution:

void init_list_head(struct list_head* head) {
head->prev = head;
head->next = head;

}

Benno Lossin <benno.lossin@proton.me> 7

A Problem with Initialization
Consider this bad piece of C code:

struct list_head new_list_head(void) {
struct list_head head;
head.next = &head;
head.prev = &head;
return head;

}

I Rust needs to prevent the equivalent code from compiling.
I To find a solution in Rust, we take a look at the C solution:

void init_list_head(struct list_head* head) {
head->prev = head;
head->next = head;

}

Benno Lossin <benno.lossin@proton.me> 7

A Problem with Initialization
Consider this bad piece of C code:

struct list_head new_list_head(void) {
struct list_head head;
head.next = &head;
head.prev = &head;
return head;

}

I Rust needs to prevent the equivalent code from compiling.
I To find a solution in Rust, we take a look at the C solution:

void init_list_head(struct list_head* head) {
head->prev = head;
head->next = head;

}

Benno Lossin <benno.lossin@proton.me> 7

A Problem with Initialization

void init_list_head(struct list_head* head) {
head->prev = head;
head->next = head;

}

Translating to Rust:

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

But this requires unsafe code!

Benno Lossin <benno.lossin@proton.me> 8

A Problem with Initialization

void init_list_head(struct list_head* head) {
head->prev = head;
head->next = head;

}

Translating to Rust:

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

But this requires unsafe code!

Benno Lossin <benno.lossin@proton.me> 8

A Problem with Initialization

void init_list_head(struct list_head* head) {
head->prev = head;
head->next = head;

}

Translating to Rust:

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

But this requires unsafe code!

Benno Lossin <benno.lossin@proton.me> 8

A Problem with Initialization

void init_list_head(struct list_head* head) {
head->prev = head;
head->next = head;

}

Translating to Rust:

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

But this requires unsafe code!

Benno Lossin <benno.lossin@proton.me> 8

A Problem with Initialization

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

Problems with unsafe:
I Who ensures that head is a valid pointer?
I Still not ensured that ListHead stays/even is pinned.
I How to call this without unsafe?

Solution in C: use convention and rely on the programmer to do it
correctly.
Rust aims to offload most of this work to the compiler.

Benno Lossin <benno.lossin@proton.me> 9

A Problem with Initialization

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

Problems with unsafe:
I Who ensures that head is a valid pointer?

I Still not ensured that ListHead stays/even is pinned.
I How to call this without unsafe?

Solution in C: use convention and rely on the programmer to do it
correctly.
Rust aims to offload most of this work to the compiler.

Benno Lossin <benno.lossin@proton.me> 9

A Problem with Initialization

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

Problems with unsafe:
I Who ensures that head is a valid pointer?
I Still not ensured that ListHead stays/even is pinned.

I How to call this without unsafe?
Solution in C: use convention and rely on the programmer to do it
correctly.
Rust aims to offload most of this work to the compiler.

Benno Lossin <benno.lossin@proton.me> 9

A Problem with Initialization

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

Problems with unsafe:
I Who ensures that head is a valid pointer?
I Still not ensured that ListHead stays/even is pinned.
I How to call this without unsafe?

Solution in C: use convention and rely on the programmer to do it
correctly.
Rust aims to offload most of this work to the compiler.

Benno Lossin <benno.lossin@proton.me> 9

A Problem with Initialization

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

Problems with unsafe:
I Who ensures that head is a valid pointer?
I Still not ensured that ListHead stays/even is pinned.
I How to call this without unsafe?

Solution in C: use convention and rely on the programmer to do it
correctly.

Rust aims to offload most of this work to the compiler.

Benno Lossin <benno.lossin@proton.me> 9

A Problem with Initialization

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

Problems with unsafe:
I Who ensures that head is a valid pointer?
I Still not ensured that ListHead stays/even is pinned.
I How to call this without unsafe?

Solution in C: use convention and rely on the programmer to do it
correctly.
Rust aims to offload most of this work to the compiler.

Benno Lossin <benno.lossin@proton.me> 9

The Solution: pin-init
Turn this:

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

Into this:

fn new() -> impl PinInit<ListHead> {
pin_init!(&this in ListHead {

prev: this,
next: this,

})
}

Benno Lossin <benno.lossin@proton.me> 10

The Solution: pin-init
Turn this:

unsafe fn init_list_head(head: *mut ListHead) {
unsafe {

(*head).prev = head;
(*head).next = head;

}
}

Into this:

fn new() -> impl PinInit<ListHead> {
pin_init!(&this in ListHead {

prev: this,
next: this,

})
}

Benno Lossin <benno.lossin@proton.me> 10

The Solution: pin-init
fn new() -> impl PinInit<ListHead> {

pin_init!(&this in ListHead {
prev: this,
next: this,

})
}

No unsafe to be found!
The API guarantees:
I All fields of the struct are initialized (none can be forgotten),
I The struct stays pinned after initialization

(i.e. it will have a stable address),
I No uninitialized memory can be used accidentally,
I The only way to initialize the struct is pin-init,
I No runtime cost: it is a zero-cost abstraction.

It is a feature-rich API, so if you need help just ask on zulip:
https://rust-for-linux.zulipchat.com

Benno Lossin <benno.lossin@proton.me> 11

https://rust-for-linux.zulipchat.com

The Solution: pin-init
fn new() -> impl PinInit<ListHead> {

pin_init!(&this in ListHead {
prev: this,
next: this,

})
}

No unsafe to be found!

The API guarantees:
I All fields of the struct are initialized (none can be forgotten),
I The struct stays pinned after initialization

(i.e. it will have a stable address),
I No uninitialized memory can be used accidentally,
I The only way to initialize the struct is pin-init,
I No runtime cost: it is a zero-cost abstraction.

It is a feature-rich API, so if you need help just ask on zulip:
https://rust-for-linux.zulipchat.com

Benno Lossin <benno.lossin@proton.me> 11

https://rust-for-linux.zulipchat.com

The Solution: pin-init
fn new() -> impl PinInit<ListHead> {

pin_init!(&this in ListHead {
prev: this,
next: this,

})
}

No unsafe to be found!
The API guarantees:
I All fields of the struct are initialized (none can be forgotten),

I The struct stays pinned after initialization
(i.e. it will have a stable address),

I No uninitialized memory can be used accidentally,
I The only way to initialize the struct is pin-init,
I No runtime cost: it is a zero-cost abstraction.

It is a feature-rich API, so if you need help just ask on zulip:
https://rust-for-linux.zulipchat.com

Benno Lossin <benno.lossin@proton.me> 11

https://rust-for-linux.zulipchat.com

The Solution: pin-init
fn new() -> impl PinInit<ListHead> {

pin_init!(&this in ListHead {
prev: this,
next: this,

})
}

No unsafe to be found!
The API guarantees:
I All fields of the struct are initialized (none can be forgotten),
I The struct stays pinned after initialization

(i.e. it will have a stable address),

I No uninitialized memory can be used accidentally,
I The only way to initialize the struct is pin-init,
I No runtime cost: it is a zero-cost abstraction.

It is a feature-rich API, so if you need help just ask on zulip:
https://rust-for-linux.zulipchat.com

Benno Lossin <benno.lossin@proton.me> 11

https://rust-for-linux.zulipchat.com

The Solution: pin-init
fn new() -> impl PinInit<ListHead> {

pin_init!(&this in ListHead {
prev: this,
next: this,

})
}

No unsafe to be found!
The API guarantees:
I All fields of the struct are initialized (none can be forgotten),
I The struct stays pinned after initialization

(i.e. it will have a stable address),
I No uninitialized memory can be used accidentally,

I The only way to initialize the struct is pin-init,
I No runtime cost: it is a zero-cost abstraction.

It is a feature-rich API, so if you need help just ask on zulip:
https://rust-for-linux.zulipchat.com

Benno Lossin <benno.lossin@proton.me> 11

https://rust-for-linux.zulipchat.com

The Solution: pin-init
fn new() -> impl PinInit<ListHead> {

pin_init!(&this in ListHead {
prev: this,
next: this,

})
}

No unsafe to be found!
The API guarantees:
I All fields of the struct are initialized (none can be forgotten),
I The struct stays pinned after initialization

(i.e. it will have a stable address),
I No uninitialized memory can be used accidentally,
I The only way to initialize the struct is pin-init,

I No runtime cost: it is a zero-cost abstraction.
It is a feature-rich API, so if you need help just ask on zulip:
https://rust-for-linux.zulipchat.com

Benno Lossin <benno.lossin@proton.me> 11

https://rust-for-linux.zulipchat.com

The Solution: pin-init
fn new() -> impl PinInit<ListHead> {

pin_init!(&this in ListHead {
prev: this,
next: this,

})
}

No unsafe to be found!
The API guarantees:
I All fields of the struct are initialized (none can be forgotten),
I The struct stays pinned after initialization

(i.e. it will have a stable address),
I No uninitialized memory can be used accidentally,
I The only way to initialize the struct is pin-init,
I No runtime cost: it is a zero-cost abstraction.

It is a feature-rich API, so if you need help just ask on zulip:
https://rust-for-linux.zulipchat.com

Benno Lossin <benno.lossin@proton.me> 11

https://rust-for-linux.zulipchat.com

The Solution: pin-init
fn new() -> impl PinInit<ListHead> {

pin_init!(&this in ListHead {
prev: this,
next: this,

})
}

No unsafe to be found!
The API guarantees:
I All fields of the struct are initialized (none can be forgotten),
I The struct stays pinned after initialization

(i.e. it will have a stable address),
I No uninitialized memory can be used accidentally,
I The only way to initialize the struct is pin-init,
I No runtime cost: it is a zero-cost abstraction.

It is a feature-rich API, so if you need help just ask on zulip:
https://rust-for-linux.zulipchat.com

Benno Lossin <benno.lossin@proton.me> 11

https://rust-for-linux.zulipchat.com

The pin-init API in action
Code from the rust branch without the pin-init API:

1 let mut state = Pin::from(UniqueRef::try_new(Self {
2 // SAFETY: `condvar_init!` is called below.
3 state_changed: unsafe { CondVar::new() },
4 // SAFETY: `mutex_init!` is called below.
5 inner: unsafe { Mutex::new(SharedStateInner { token_count: 0 }) },
6 })?);
7
8 // SAFETY: `state_changed` is pinned when `state` is.
9 let pinned = unsafe {

10 state.as_mut().map_unchecked_mut(|s| &mut s.state_changed)
11 };
12 kernel::condvar_init!(pinned, "SharedState::state_changed");
13
14 // SAFETY: `inner` is pinned when `state` is.
15 let pinned = unsafe {
16 state.as_mut().map_unchecked_mut(|s| &mut s.inner)
17 };
18 kernel::mutex_init!(pinned, "SharedState::inner");
19
20 Ok(state.into())

This requires unsafe code!

Benno Lossin <benno.lossin@proton.me> 12

The pin-init API in action
Code from the rust branch without the pin-init API:

1 let mut state = Pin::from(UniqueRef::try_new(Self {
2 // SAFETY: `condvar_init!` is called below.
3 state_changed: unsafe { CondVar::new() },
4 // SAFETY: `mutex_init!` is called below.
5 inner: unsafe { Mutex::new(SharedStateInner { token_count: 0 }) },
6 })?);
7
8 // SAFETY: `state_changed` is pinned when `state` is.
9 let pinned = unsafe {

10 state.as_mut().map_unchecked_mut(|s| &mut s.state_changed)
11 };
12 kernel::condvar_init!(pinned, "SharedState::state_changed");
13
14 // SAFETY: `inner` is pinned when `state` is.
15 let pinned = unsafe {
16 state.as_mut().map_unchecked_mut(|s| &mut s.inner)
17 };
18 kernel::mutex_init!(pinned, "SharedState::inner");
19
20 Ok(state.into())

This requires unsafe code!

Benno Lossin <benno.lossin@proton.me> 12

The pin-init API in action
Code from the rust branch without the pin-init API:

1 let mut state = Pin::from(UniqueRef::try_new(Self {
2 // SAFETY: `condvar_init!` is called below.
3 state_changed: unsafe { CondVar::new() },
4 // SAFETY: `mutex_init!` is called below.
5 inner: unsafe { Mutex::new(SharedStateInner { token_count: 0 }) },
6 })?);
7
8 // SAFETY: `state_changed` is pinned when `state` is.
9 let pinned = unsafe {

10 state.as_mut().map_unchecked_mut(|s| &mut s.state_changed)
11 };
12 kernel::condvar_init!(pinned, "SharedState::state_changed");
13
14 // SAFETY: `inner` is pinned when `state` is.
15 let pinned = unsafe {
16 state.as_mut().map_unchecked_mut(|s| &mut s.inner)
17 };
18 kernel::mutex_init!(pinned, "SharedState::inner");
19
20 Ok(state.into())

This requires unsafe code!
Benno Lossin <benno.lossin@proton.me> 12

The pin-init API in action

Improved code with the pin-init API:

1 pin_init!(Self {
2 state_changed <- new_condvar!("SharedState::state_changed"),
3 inner <- new_mutex!(
4 SharedStateInner { token_count: 0 },
5 "SharedState::Inner",
6),
7 })

No unsafe to be found!

Benno Lossin <benno.lossin@proton.me> 13

Initialization and Address Stability
A Motivation for Rust
Address Stability in the Kernel
Address Stability Support in Rust
A Problem with Initialization
The Solution: pin-init

Field Projections
Field Projections
The Problem with Pin<P>
A possible solution: Pin-Projections
Other Kinds of Field Projections

Benno Lossin <benno.lossin@proton.me> 14

Field Projections
I Having a pointer &mut Struct to a struct:

struct Struct {
field: Field,

}

I Turning that pointer into a pointer “of the same type” to a
field of that struct:

&mut Struct &mut Field
I This is possible in Rust: &mut my_struct.field

In Rust a different pointer type can carry additional information:
I &mut MaybeUninit<Struct> points to a possibly

uninitialized Struct (and only provides unsafe access)
natural projection:

&mut MaybeUninit<Struct> &mut MaybeUninit<Field>
I But this is not (safely) possible in Rust at the moment

Benno Lossin <benno.lossin@proton.me> 15

Field Projections
I Having a pointer &mut Struct to a struct:

struct Struct {
field: Field,

}

I Turning that pointer into a pointer “of the same type” to a
field of that struct:

&mut Struct &mut Field
I This is possible in Rust: &mut my_struct.field

In Rust a different pointer type can carry additional information:
I &mut MaybeUninit<Struct> points to a possibly

uninitialized Struct (and only provides unsafe access)
natural projection:

&mut MaybeUninit<Struct> &mut MaybeUninit<Field>
I But this is not (safely) possible in Rust at the moment

Benno Lossin <benno.lossin@proton.me> 15

Field Projections
I Having a pointer &mut Struct to a struct:

struct Struct {
field: Field,

}

I Turning that pointer into a pointer “of the same type” to a
field of that struct:

&mut Struct &mut Field

I This is possible in Rust: &mut my_struct.field

In Rust a different pointer type can carry additional information:
I &mut MaybeUninit<Struct> points to a possibly

uninitialized Struct (and only provides unsafe access)
natural projection:

&mut MaybeUninit<Struct> &mut MaybeUninit<Field>
I But this is not (safely) possible in Rust at the moment

Benno Lossin <benno.lossin@proton.me> 15

Field Projections
I Having a pointer &mut Struct to a struct:

struct Struct {
field: Field,

}

I Turning that pointer into a pointer “of the same type” to a
field of that struct:

&mut Struct &mut Field
I This is possible in Rust: &mut my_struct.field

In Rust a different pointer type can carry additional information:
I &mut MaybeUninit<Struct> points to a possibly

uninitialized Struct (and only provides unsafe access)
natural projection:

&mut MaybeUninit<Struct> &mut MaybeUninit<Field>
I But this is not (safely) possible in Rust at the moment

Benno Lossin <benno.lossin@proton.me> 15

Field Projections
I Having a pointer &mut Struct to a struct:

struct Struct {
field: Field,

}

I Turning that pointer into a pointer “of the same type” to a
field of that struct:

&mut Struct &mut Field
I This is possible in Rust: &mut my_struct.field

In Rust a different pointer type can carry additional information:

I &mut MaybeUninit<Struct> points to a possibly
uninitialized Struct (and only provides unsafe access)
natural projection:

&mut MaybeUninit<Struct> &mut MaybeUninit<Field>
I But this is not (safely) possible in Rust at the moment

Benno Lossin <benno.lossin@proton.me> 15

Field Projections
I Having a pointer &mut Struct to a struct:

struct Struct {
field: Field,

}

I Turning that pointer into a pointer “of the same type” to a
field of that struct:

&mut Struct &mut Field
I This is possible in Rust: &mut my_struct.field

In Rust a different pointer type can carry additional information:
I &mut MaybeUninit<Struct> points to a possibly

uninitialized Struct (and only provides unsafe access)

natural projection:
&mut MaybeUninit<Struct> &mut MaybeUninit<Field>

I But this is not (safely) possible in Rust at the moment

Benno Lossin <benno.lossin@proton.me> 15

Field Projections
I Having a pointer &mut Struct to a struct:

struct Struct {
field: Field,

}

I Turning that pointer into a pointer “of the same type” to a
field of that struct:

&mut Struct &mut Field
I This is possible in Rust: &mut my_struct.field

In Rust a different pointer type can carry additional information:
I &mut MaybeUninit<Struct> points to a possibly

uninitialized Struct (and only provides unsafe access)
natural projection:

&mut MaybeUninit<Struct> &mut MaybeUninit<Field>

I But this is not (safely) possible in Rust at the moment

Benno Lossin <benno.lossin@proton.me> 15

Field Projections
I Having a pointer &mut Struct to a struct:

struct Struct {
field: Field,

}

I Turning that pointer into a pointer “of the same type” to a
field of that struct:

&mut Struct &mut Field
I This is possible in Rust: &mut my_struct.field

In Rust a different pointer type can carry additional information:
I &mut MaybeUninit<Struct> points to a possibly

uninitialized Struct (and only provides unsafe access)
natural projection:

&mut MaybeUninit<Struct> &mut MaybeUninit<Field>
I But this is not (safely) possible in Rust at the moment

Benno Lossin <benno.lossin@proton.me> 15

The Problem with Pin<P>

I All mutating functions on the pinned type need to take
Pin<&mut Self>.

I Remember: no access to &mut Self allowed (because swap
exists), so how can one modify the fields?

I For example:

struct Foo {
list_head: ListHead,
count: usize,

}

I Foo needs to be pinned because of the ListHead field.
I How to modify count?

Benno Lossin <benno.lossin@proton.me> 16

The Problem with Pin<P>

I All mutating functions on the pinned type need to take
Pin<&mut Self>.

I Remember: no access to &mut Self allowed (because swap
exists), so how can one modify the fields?

I For example:

struct Foo {
list_head: ListHead,
count: usize,

}

I Foo needs to be pinned because of the ListHead field.
I How to modify count?

Benno Lossin <benno.lossin@proton.me> 16

The Problem with Pin<P>

I All mutating functions on the pinned type need to take
Pin<&mut Self>.

I Remember: no access to &mut Self allowed (because swap
exists), so how can one modify the fields?

I For example:

struct Foo {
list_head: ListHead,
count: usize,

}

I Foo needs to be pinned because of the ListHead field.
I How to modify count?

Benno Lossin <benno.lossin@proton.me> 16

The Problem with Pin<P>

I All mutating functions on the pinned type need to take
Pin<&mut Self>.

I Remember: no access to &mut Self allowed (because swap
exists), so how can one modify the fields?

I For example:

struct Foo {
list_head: ListHead,
count: usize,

}

I Foo needs to be pinned because of the ListHead field.

I How to modify count?

Benno Lossin <benno.lossin@proton.me> 16

The Problem with Pin<P>

I All mutating functions on the pinned type need to take
Pin<&mut Self>.

I Remember: no access to &mut Self allowed (because swap
exists), so how can one modify the fields?

I For example:

struct Foo {
list_head: ListHead,
count: usize,

}

I Foo needs to be pinned because of the ListHead field.
I How to modify count?

Benno Lossin <benno.lossin@proton.me> 16

A possible solution: Pin-Projections
struct Foo {

list_head: ListHead,
count: usize,

}

Observe that there are two types of fields:
1. Fields that do not require to be pinned (like count)

=⇒ allow access via &mut usize

2. Fields that require to be pinned (like list_head)

=⇒ only allow access via Pin<&mut ListHead>

I Special case of field projections:
Pin<&mut Foo> &mut usize

Pin<&mut Foo> Pin<&mut ListHead>

I These are called pin projections, they depend on the
“intended usecase” of the field and are determined on a field
by field basis.

Benno Lossin <benno.lossin@proton.me> 17

A possible solution: Pin-Projections
struct Foo {

list_head: ListHead,
count: usize,

}

Observe that there are two types of fields:

1. Fields that do not require to be pinned (like count)

=⇒ allow access via &mut usize

2. Fields that require to be pinned (like list_head)

=⇒ only allow access via Pin<&mut ListHead>

I Special case of field projections:
Pin<&mut Foo> &mut usize

Pin<&mut Foo> Pin<&mut ListHead>

I These are called pin projections, they depend on the
“intended usecase” of the field and are determined on a field
by field basis.

Benno Lossin <benno.lossin@proton.me> 17

A possible solution: Pin-Projections
struct Foo {

list_head: ListHead,
count: usize,

}

Observe that there are two types of fields:
1. Fields that do not require to be pinned (like count)

=⇒ allow access via &mut usize

2. Fields that require to be pinned (like list_head)

=⇒ only allow access via Pin<&mut ListHead>

I Special case of field projections:
Pin<&mut Foo> &mut usize

Pin<&mut Foo> Pin<&mut ListHead>

I These are called pin projections, they depend on the
“intended usecase” of the field and are determined on a field
by field basis.

Benno Lossin <benno.lossin@proton.me> 17

A possible solution: Pin-Projections
struct Foo {

list_head: ListHead,
count: usize,

}

Observe that there are two types of fields:
1. Fields that do not require to be pinned (like count)

=⇒ allow access via &mut usize

2. Fields that require to be pinned (like list_head)

=⇒ only allow access via Pin<&mut ListHead>

I Special case of field projections:
Pin<&mut Foo> &mut usize

Pin<&mut Foo> Pin<&mut ListHead>

I These are called pin projections, they depend on the
“intended usecase” of the field and are determined on a field
by field basis.

Benno Lossin <benno.lossin@proton.me> 17

A possible solution: Pin-Projections
struct Foo {

list_head: ListHead,
count: usize,

}

Observe that there are two types of fields:
1. Fields that do not require to be pinned (like count)

=⇒ allow access via &mut usize
2. Fields that require to be pinned (like list_head)

=⇒ only allow access via Pin<&mut ListHead>

I Special case of field projections:
Pin<&mut Foo> &mut usize

Pin<&mut Foo> Pin<&mut ListHead>

I These are called pin projections, they depend on the
“intended usecase” of the field and are determined on a field
by field basis.

Benno Lossin <benno.lossin@proton.me> 17

A possible solution: Pin-Projections
struct Foo {

list_head: ListHead,
count: usize,

}

Observe that there are two types of fields:
1. Fields that do not require to be pinned (like count)

=⇒ allow access via &mut usize
2. Fields that require to be pinned (like list_head)

=⇒ only allow access via Pin<&mut ListHead>

I Special case of field projections:
Pin<&mut Foo> &mut usize

Pin<&mut Foo> Pin<&mut ListHead>

I These are called pin projections, they depend on the
“intended usecase” of the field and are determined on a field
by field basis.

Benno Lossin <benno.lossin@proton.me> 17

A possible solution: Pin-Projections
struct Foo {

list_head: ListHead,
count: usize,

}

Observe that there are two types of fields:
1. Fields that do not require to be pinned (like count)

=⇒ allow access via &mut usize
2. Fields that require to be pinned (like list_head)

=⇒ only allow access via Pin<&mut ListHead>

I Special case of field projections:
Pin<&mut Foo> &mut usize

Pin<&mut Foo> Pin<&mut ListHead>

I These are called pin projections, they depend on the
“intended usecase” of the field and are determined on a field
by field basis.

Benno Lossin <benno.lossin@proton.me> 17

A possible solution: Pin-Projections
struct Foo {

list_head: ListHead,
count: usize,

}

Observe that there are two types of fields:
1. Fields that do not require to be pinned (like count)

=⇒ allow access via &mut usize
2. Fields that require to be pinned (like list_head)

=⇒ only allow access via Pin<&mut ListHead>

I Special case of field projections:
Pin<&mut Foo> &mut usize

Pin<&mut Foo> Pin<&mut ListHead>

I These are called pin projections, they depend on the
“intended usecase” of the field and are determined on a field
by field basis.

Benno Lossin <benno.lossin@proton.me> 17

Other Kinds of Projections
The concept of projecting a value is could be useful in many other
situations:

I MaybeUninit<T>: as shown before
I VolatileMem<T>: all memory must be accessed by volatile

operations =⇒ the fields also have to be accessed in a
volatile manner. Therefore we can allow projections:

&mut VolatileMem<Struct> &mut VolatileMem<Field>

Another important usage would be for field access via raw pointers:
I Allow projecting:

*mut Struct *mut Field
I Improve ergonomics by introducing projection operator ->:

foo->bar instead of unsafe { addr_of!((*foo).bar) }
I RFC for adding general field projection support to Rust:

http://github.com/rust-lang/rfcs/pull/3318

Benno Lossin <benno.lossin@proton.me> 18

http://github.com/rust-lang/rfcs/pull/3318

Other Kinds of Projections
The concept of projecting a value is could be useful in many other
situations:
I MaybeUninit<T>: as shown before

I VolatileMem<T>: all memory must be accessed by volatile
operations =⇒ the fields also have to be accessed in a
volatile manner. Therefore we can allow projections:

&mut VolatileMem<Struct> &mut VolatileMem<Field>

Another important usage would be for field access via raw pointers:
I Allow projecting:

*mut Struct *mut Field
I Improve ergonomics by introducing projection operator ->:

foo->bar instead of unsafe { addr_of!((*foo).bar) }
I RFC for adding general field projection support to Rust:

http://github.com/rust-lang/rfcs/pull/3318

Benno Lossin <benno.lossin@proton.me> 18

http://github.com/rust-lang/rfcs/pull/3318

Other Kinds of Projections
The concept of projecting a value is could be useful in many other
situations:
I MaybeUninit<T>: as shown before
I VolatileMem<T>: all memory must be accessed by volatile

operations

=⇒ the fields also have to be accessed in a
volatile manner. Therefore we can allow projections:

&mut VolatileMem<Struct> &mut VolatileMem<Field>

Another important usage would be for field access via raw pointers:
I Allow projecting:

*mut Struct *mut Field
I Improve ergonomics by introducing projection operator ->:

foo->bar instead of unsafe { addr_of!((*foo).bar) }
I RFC for adding general field projection support to Rust:

http://github.com/rust-lang/rfcs/pull/3318

Benno Lossin <benno.lossin@proton.me> 18

http://github.com/rust-lang/rfcs/pull/3318

Other Kinds of Projections
The concept of projecting a value is could be useful in many other
situations:
I MaybeUninit<T>: as shown before
I VolatileMem<T>: all memory must be accessed by volatile

operations =⇒ the fields also have to be accessed in a
volatile manner. Therefore we can allow projections:

&mut VolatileMem<Struct> &mut VolatileMem<Field>

Another important usage would be for field access via raw pointers:
I Allow projecting:

*mut Struct *mut Field
I Improve ergonomics by introducing projection operator ->:

foo->bar instead of unsafe { addr_of!((*foo).bar) }
I RFC for adding general field projection support to Rust:

http://github.com/rust-lang/rfcs/pull/3318

Benno Lossin <benno.lossin@proton.me> 18

http://github.com/rust-lang/rfcs/pull/3318

Other Kinds of Projections
The concept of projecting a value is could be useful in many other
situations:
I MaybeUninit<T>: as shown before
I VolatileMem<T>: all memory must be accessed by volatile

operations =⇒ the fields also have to be accessed in a
volatile manner. Therefore we can allow projections:

&mut VolatileMem<Struct> &mut VolatileMem<Field>

Another important usage would be for field access via raw pointers:
I Allow projecting:

*mut Struct *mut Field
I Improve ergonomics by introducing projection operator ->:

foo->bar instead of unsafe { addr_of!((*foo).bar) }
I RFC for adding general field projection support to Rust:

http://github.com/rust-lang/rfcs/pull/3318

Benno Lossin <benno.lossin@proton.me> 18

http://github.com/rust-lang/rfcs/pull/3318

Other Kinds of Projections
The concept of projecting a value is could be useful in many other
situations:
I MaybeUninit<T>: as shown before
I VolatileMem<T>: all memory must be accessed by volatile

operations =⇒ the fields also have to be accessed in a
volatile manner. Therefore we can allow projections:

&mut VolatileMem<Struct> &mut VolatileMem<Field>

Another important usage would be for field access via raw pointers:

I Allow projecting:
*mut Struct *mut Field

I Improve ergonomics by introducing projection operator ->:
foo->bar instead of unsafe { addr_of!((*foo).bar) }

I RFC for adding general field projection support to Rust:
http://github.com/rust-lang/rfcs/pull/3318

Benno Lossin <benno.lossin@proton.me> 18

http://github.com/rust-lang/rfcs/pull/3318

Other Kinds of Projections
The concept of projecting a value is could be useful in many other
situations:
I MaybeUninit<T>: as shown before
I VolatileMem<T>: all memory must be accessed by volatile

operations =⇒ the fields also have to be accessed in a
volatile manner. Therefore we can allow projections:

&mut VolatileMem<Struct> &mut VolatileMem<Field>

Another important usage would be for field access via raw pointers:
I Allow projecting:

*mut Struct *mut Field

I Improve ergonomics by introducing projection operator ->:
foo->bar instead of unsafe { addr_of!((*foo).bar) }

I RFC for adding general field projection support to Rust:
http://github.com/rust-lang/rfcs/pull/3318

Benno Lossin <benno.lossin@proton.me> 18

http://github.com/rust-lang/rfcs/pull/3318

Other Kinds of Projections
The concept of projecting a value is could be useful in many other
situations:
I MaybeUninit<T>: as shown before
I VolatileMem<T>: all memory must be accessed by volatile

operations =⇒ the fields also have to be accessed in a
volatile manner. Therefore we can allow projections:

&mut VolatileMem<Struct> &mut VolatileMem<Field>

Another important usage would be for field access via raw pointers:
I Allow projecting:

*mut Struct *mut Field
I Improve ergonomics by introducing projection operator ->:

foo->bar instead of unsafe { addr_of!((*foo).bar) }

I RFC for adding general field projection support to Rust:
http://github.com/rust-lang/rfcs/pull/3318

Benno Lossin <benno.lossin@proton.me> 18

http://github.com/rust-lang/rfcs/pull/3318

Other Kinds of Projections
The concept of projecting a value is could be useful in many other
situations:
I MaybeUninit<T>: as shown before
I VolatileMem<T>: all memory must be accessed by volatile

operations =⇒ the fields also have to be accessed in a
volatile manner. Therefore we can allow projections:

&mut VolatileMem<Struct> &mut VolatileMem<Field>

Another important usage would be for field access via raw pointers:
I Allow projecting:

*mut Struct *mut Field
I Improve ergonomics by introducing projection operator ->:

foo->bar instead of unsafe { addr_of!((*foo).bar) }
I RFC for adding general field projection support to Rust:

http://github.com/rust-lang/rfcs/pull/3318

Benno Lossin <benno.lossin@proton.me> 18

http://github.com/rust-lang/rfcs/pull/3318

Thanks for Your Attention!

Follow my work:
I RFC for adding general field projection support to Rust:

https://github.com/rust-lang/rfcs/pull/3318
I pin-init userspace library:

https://github.com/Rust-for-Linux/pinned-init
Contact me on:
I https://rust-for-linux.zulipchat.com

Benno Lossin <benno.lossin@proton.me> 19

https://github.com/rust-lang/rfcs/pull/3318
https://github.com/Rust-for-Linux/pinned-init
https://rust-for-linux.zulipchat.com

	Initialization and Address Stability
	A Motivation for Rust
	Address Stability in the Kernel
	Address Stability Support in Rust
	A Problem with Initialization
	The Solution: pin-init

	Field Projections
	Field Projections
	The Problem with Pin<P>
	A possible solution: Pin-Projections
	Other Kinds of Field Projections

