
Converting a DRM driver to Rust

Maíra Canal
Richmond, VA - LPC 2023

What is the VGEM driver?

Converting a DRM driver to Rust
Maíra Canal, LPC 2023

� VGEM (Virtual GEM provider) is a minimal non-hardware-backed GEM service.

� It was written in C and introduced in 2015.

� Fairly small driver (~400 lines): GEM service + 2 IOCTLs

� Use case: no real GPU available in setups with QEMU and llvmpipe

Why are we rewriting VGEM?
� Proof of Concept

� It is a GPU-agnostic driver

� It is a compact driver

� Uses a lot of the DRM framework

Converting a DRM driver to Rust
Maíra Canal, LPC 2023

What is rustgem?

Converting a DRM driver to Rust
Maíra Canal, LPC 2023

� Rustgem is a driver written in Rust with the exactly same functionality as VGEM

� It was written using Asahi Lina's DRM bindings + RfL bindings

● Thanks RfL folks!

� I wrote bindings for legacy platform device initialization and dma-resv

https://github.com/mairacanal/linux/pull/11

� Managing unsafe code

● SAFETY review

● Q: How can we encourage SAFETY review inside the subsystems?

● Q: Can a beginner spot subtle safety issues?

Technical Hurdles

Converting a DRM driver to Rust
Maíra Canal, LPC 2023

+ /// Returns the pointer to reservation object associated with this GEM object.
+ fn resv(&self) -> DmaResv {
+ // SAFETY: Every GEM object holds a reference to a reservation object
+ unsafe { DmaResv::from_raw(self.gem_obj().resv) }
+ }

� How to write good safe abstractions?

● Rust For Linux: Writing Safe Abstractions & Drivers was a good resource for me

at that time

● Q: Maybe we could include more documentation about writing safe

abstractions?

Technical Hurdles

Converting a DRM driver to Rust
Maíra Canal, LPC 2023

https://www.linuxfoundation.org/webinars/rust-for-linux-writing-abstractions-and-drivers

� Problems with macro expansion

● Q: How can we make this easier?

Technical Hurdles

Converting a DRM driver to Rust
Maíra Canal, LPC 2023

// include/uapi/drm/vgem_drm.h
#define DRM_IOCTL_VGEM_FENCE_ATTACH DRM_IOWR(DRM_COMMAND_BASE + DRM_VGEM_FENCE_ATTACH, struct drm_vgem_fence_attach)
#define DRM_IOCTL_VGEM_FENCE_SIGNAL DRM_IOW(DRM_COMMAND_BASE + DRM_VGEM_FENCE_SIGNAL, struct drm_vgem_fence_signal)

// include/uapi/drm/vgem_drm.h
/* Note: this is an enum so that it can be resolved by Rust bindgen. */
enum {
 DRM_IOCTL_VGEM_FENCE_ATTACH = DRM_IOWR(DRM_COMMAND_BASE + DRM_VGEM_FENCE_ATTACH, struct drm_vgem_fence_attach),
 DRM_IOCTL_VGEM_FENCE_SIGNAL = DRM_IOW(DRM_COMMAND_BASE + DRM_VGEM_FENCE_SIGNAL, struct drm_vgem_fence_signal),
};

� We have the DRM bindings

� We have the two upstreamable drivers (Asahi and rustgem)

� Q: What could help us to upstream Rust for DRM?

� Q: What is the next step?

Next step: Upstream

Converting a DRM driver to Rust
Maíra Canal, LPC 2023

� If we accept Rust in the DRM, it means that everyone is responsible for it

� People writing bindings might need to touch C code

� Rust has well-documented benefits that we might want as a community

� If we want to see things moving forward, we need to compromise

Converting a DRM driver to Rust
Maíra Canal, LPC 2023

Next step: Upstream

� Maybe we could include documentation about writing safe abstractions?

� How can we encourage SAFETY review inside the subsystems?

� How can we improve macro expansion?

� What could help us to upstream Rust for DRM?

� What is the next step to upstream Rust for DRM?

Discussion

Converting a DRM driver to Rust
Maíra Canal, LPC 2023

We’re hiring!

https://www.igalia.com/jobs/

https://www.igalia.com/jobs/

