

PCI Endpoint Subsystem Open Items
Manivannan Sadhasivam
Senior Kernel Engineer
Linaro

Agenda

● Virtio EPF drivers for Interoperability
● Devicetree Integration
● Genalloc for Outbound Window Memory Allocation

Virtio EPF drivers for Interoperability

Virtio - Overview

● Open standard for communication between drivers and devices of different types

● Initially developed by Rusty Russell

● Now maintained by a standards body
○ https://docs.oasis-open.org/virtio/virtio/

● Primarily used as an I/O virtualization framework
○ Exposing I/O devices to guests by the hypervisor

○ Used by hypervisors such as KVM, lguest, ACRN etc…

● Also used for inter chip communication within the SoC
○ RPMSG

https://docs.oasis-open.org/virtio/virtio/

Virtio Architecture - Simplified

PCI Endpoint Subsystem - Overview

● Used to make Linux run on PCI(e) Endpoint devices (NVMe, WLAN, Modems, etc…)

● Added as a separate subsystem/framework under PCI
○ drivers/pci/endpoint/

● Endpoint Controller (EPC) drivers manages the PCI transport
○ drivers/pci/controllers/

● Endpoint Function (EPF) drivers define the behavior of the device
○ drivers/pci/endpoint/functions/

● Needs equivalent drivers on the host for functionality
○ drivers/misc/pci_endpoint_test.c

○ For devices like NVMe, existing driver can be reused

■ drivers/nvme/host/pci.c

Virtio for PCI Endpoint Subsystem

● Idea mooted around 2019
○ https://lore.kernel.org/all/20190823213145.2016-1-haotian.wang@sifive.com/

● Existing Virtio frontend drivers on the host (Linux Kernel) can be reused
○ PCI Endpoint vendors can just develop Virtio backend drivers

● Reduces fragmentation and lead time drastically

https://lore.kernel.org/all/20190823213145.2016-1-haotian.wang@sifive.com/

Proposals

● Haotian Wang - 2019

https://lore.kernel.org/all/20190823213145.2016-1-haotian.wang@sifive.com/

Proposals

● Kishon Vijay Abraham - 2020

https://lore.kernel.org/linux-pci/20200702082143.25259-1-kishon@ti.com/

Proposals

● Shunsuke Mie - 2023

https://lore.kernel.org/linux-pci/20230203100418.2981144-1-mie@igel.co.jp/

Final Implementation

● Moving forward with the proposal from Shunsuke Mie?
○ Simple yet scalable one

■ Can be extended to virtio-scsi, virtio-console, etc…

○ Involving VHOST seems be an overkill

■ Drawback of proposal 2

○ Vringh offloads the virtqueue management work

■ Drawback of proposal 1

Devicetree Integration

Problem Statement

● Binding between EPC (Endpoint Controller) and EPF (Endpoint Function) happens

through ConfigFS

● No devicetree integration so far as the EPF drivers are software blocks

● But there are EPF drivers that has relevant hardware blocks

● MHI (Modem Host Interface) on Qualcomm chipsets is one example
○ MHI is a Qualcomm specific protocol using PCI as the physical layer

○ Used for transferring data packets between PCI host and endpoint

○ MHI has a hardware implementation in Qualcomm chipsets supporting PCI Endpoint mode

○ Currently, PCI Endpoint Controller (EPC) devicetree node is used for fetching EPF specific resources like

BAR region, interrupt etc…

https://docs.kernel.org/mhi/mhi.html

Proposal

● A devicetree node for MHI function
○ Child node of PCI Endpoint Controller (EPC) node

● EPF device will be created for each function and bound with EPF driver

● Properties
○ reg

○ function-name

○ bar-regions

○ Interrupts

● Linking between EPC and EPF possible without ConfigFS

Devicetree Binding

Genalloc for Outbound Window Memory Allocation

Problem Statement

● PCI Endpoint subsystem uses a custom memory allocator
○ drivers/pci/endpoint/pci-epc-mem.c

● Works well, but defeats the purpose of “Genalloc/Genpool” framework

Proposal

● Adapt “Genalloc/Genpool” framework for Endpoint subsystem

● Use existing “addr_space” region defined in EPC devicetree node
○ Backwards compatible with current allocator

Questions?

