
1

LINUXPLUMBERSCONFERENCESEPTEMBER2022

CHRISTOPHER HALL (CHRISTOPHER.S.HALL@INTEL.COM)

2

INTRODUCTION

➢ The Timed I/O device timestamps or generates external signal
events based on the platform clock

➢ Timed I/O has been supported in Intel silicon since EHL/TGL
(11th generation platforms)

3

AGENDA

➢ Timed I/O Use Cases

➢ High-Level Hardware Architecture

➢ Hardware Function

➢ Alternatives –Why a new device type is needed

➢ User API

➢ Timekeeping Support

4

USE CASES

➢ Timed I/O is primarily used to import time from and export time to
external devices

➢ Examples:

❑ Import time from GPS module with PPS output

❑ Export system time to compare clocks to measure accuracy of PTP time
synchronization

LINUX PLUMBERS CONFERENCE SEPTEMBER 2022 5

HIGH-LEVEL HARDWARE ARCHITECTURE

TSC

CPU

ART
Timer

Timed
I/O

TSC
Clocksource

Kernel
Timekeeping

H
a

rd
w

a
re

K
e

rn
e

l
A

p
p

li
ca

ti
o

n

Application

The timekeeping kernel component implements the
system time user APIs (e.g clock_gettime(),
gettimeofday())

The TSC clocksource is the software representation of
the TSC hardware converting TSC count to
nanoseconds

Timed I/O hardware is “driven by” ART

⇒ Timed I/O hardware events are directly correlated with
the system time

Time User APIs

The ART and TSC timers are phase locked and the
relationship is defined by:

Source: Intel Software Developer’s Manual (SDM)

Timed I/O External Signal

LINUX PLUMBERS CONFERENCE SEPTEMBER 2022 6

HARDWARE FUNCTION –OUTPUT
Definition: an output event is a transition – low-to-high or high-to-low – of the output level driven by the
platform on the Timed I/O signal

H

L

ART

Single Programmed Events (Platform drives):

Write future ART value (ARTn) to comparator register

comparator == ARTn: hardware generates rising edge

Write future ART value (ARTn+1) to comparator register

comparator == ARTn+1: hardware generates falling edge

ARTn ARTn+1

SW Operation

HW Operation

LINUX PLUMBERS CONFERENCE SEPTEMBER 2022 7

HARDWARE FUNCTION – INPUT
Definition: an input event is a transition – low-to-high or high-to-low – of the input level driven externally on
the Timed I/O signal

H

L

ART

Captured Events (Driven externally):

SW Operation

HW Operation

Atomically read captured (ARTn, countn) values

Hardware captures rising edge timestamp (time capture register = ARTn) and increments count value

ARTn ARTn+1

Hardware captures falling edge timestamp (time capture register = ARTn+1) and
increments count value

Atomically read captured (ARTn+1, countn+1) values

→The timestamp and count values are captured
atomically

→The timestamp is over-written for each event

→The count is used to detect lost events or

compute the average event rate with
respect to ART

LINUX PLUMBERS CONFERENCE SEPTEMBER 2022 8

HARDWARE FUNCTION –PERIODIC OUTPUT
Periodic output extends the single programmed event model to re-trigger in hardware

H

L

ART

Periodic Programmed Events (Platform drives):

Write future ART value (ARTn) to comparator register and period (ARTn+1-ARTn) to periodic interval register

comparator == ARTn: hardware generates rising edge, increments count value, and adds periodic interval to
the comparator

ARTn ARTn+1

comparator == ARTn+1: hardware generates falling edge, increments
the count value, and adds periodic interval to the comparator

SW Operation

HW Operation

→The timestamp and count values are captured
atomically

→The count is used to compute the average
event rate with respect to ART

→The computed event rate is used to adjust the
periodic interval value

9

ALTERNATIVES

➢ GPIO

❑ Do not have output periodic or otherwise

❑ Support for a polling interface is not present

➢ Comedi

❑ No concept of system clock timestamping

10

API OVERVIEW

➢ Support input

➢ Support periodic and single shot output

➢ Support PPS input through existing PPS interface

➢ Support PPS output

LINUX PLUMBERS CONFERENCE SEPTEMBER 2022 11

PROPOSED API –CONFIGURATION

One character device per signal (e.g. /dev/timedioX)

Configuration:

#define TIMEDIO_INTERRUPT_CAPABLE 0x1

enum timedio_function { TIMEDIO_IN, TIMEDIO_OUT, TIMEDIO_PPS_IN, TIMEDIO_PPS_OUT };

struct timedio_config {
enum timedio_function func; /* Select signal function */
clockid_t clockid; /* Select clock used for timestamping */
unsigned int event_queue_size; /* 1 = polled input interface, output = 1 */
unsigned int capabilities; /* e.g. check interrupt capable */
char name[32]; /* Name used to locate signal, for example, pad location, read only */

} timedio_config0;

ioctl(…, TIMEDIO_SET_CONFIG, timedio_config0);
ioctl(…, TIMEDIO_GET_CONFIG, timedio_config0);

LINUX PLUMBERS CONFERENCE SEPTEMBER 2022 12

PROPOSED API – INPUT
#define TIMEDIO_RISING_EDGE 0x1
#define TIMEDIO_FALLING_EDGE 0x2

ioctl(…, TIMEDIO_INPUT_SET_EDGE_TYPE, unsigned edge_type);

#define TIMEDIO_TIME_INVALID 0x1;
struct timedio_time {

__s64 sec; /* seconds */
__u32 nsec; /* nanoseconds */
unsigned int flags;

};

struct timedio_event {
struct timedio_time event_time;
unsigned int edge_type;
unsigned int count;

} timedio_event0;

read(…, timedio_event0, sizeof(timedio_event0)); /* Read event, return invalid time for empty queue */

LINUX PLUMBERS CONFERENCE SEPTEMBER 2022 13

PROPOSED API –OUTPUT
#define TIMEDIO_TIME_INVALID 0x1;
struct timedio_time {

__s64 sec; /* seconds */
__u32 nsec; /* nanoseconds */
unsigned int flags;

} timedio_time0;

ioctl(…, TIMEDIO_OUTPUT_SET_PERIOD, timedio_time0); /* set invalid time for one shot */

#define TIMEDIO_RISING_EDGE 0x1
#define TIMEDIO_FALLING_EDGE 0x2
struct timedio_event {

struct timedio_time event_time;
unsigned int edge_type; /* ignored for output write */

} timedio_event0;

write(…, timedio_time0, sizeof(timedio_time0)); /* Generate event */

read(…, timedio_event0, sizeof(timedio_event0)); /* Read event */

LINUX PLUMBERS CONFERENCE SEPTEMBER 2022 14

PROPOSED API –PPS OUTPUT

struct timedio_time {
__s64 sec; /* seconds */
__u32 nsec; /* nanoseconds */
unsigned int flags;

} timedio_time0;

/* Offset the output PPS time by argument */
ioctl(…, TIMEDIO_PPS_SET_OFFSET, timedio_time0);

Offset the PPS output

LINUX PLUMBERS CONFERENCE SEPTEMBER 2022 15

TIMEKEEPING SUPPORT
Translate between ART ↔ system clock

get_device_system_crosststamp() – exists, converts clocksource counter (TSC) → System Time
convert_art_to_tsc() – companion function in tsc.c

Propose:

ktime_real_get_cycles() – convert realtime clock to clocksource cycles
convert_tsc_to_art()

16

