LinuX

Plumbers
Conference

Dublin, Ireland

L Semnim

lo uring command
and
Modern NVMe passthrough

Where are we with the new 1/0 path: status and plans

Kanchan Joshi
Samsung Semiconductor India Research

Linux
Plumbers Conference | publin, Ireland sept 12-14, 2022

\ |

L Semnim

Acknowledgements

oFirst things first: credit where it's due

. Jens, Christoph, Stefan
« Many other reviewers from 10_uring and nvme list
« LSM coverage: Luis, Paul Moore, Casey

— g

Linux
Plumbers Conference | publin, Ireland Sept. 12-14, 2022

\ ‘

L Sermnim

Outline

« Why

« Semantic gap between NVMe and Linux
« How existing passthrough does not help

o What IS cemented

l0_uring command: architecture
«New nvme passthrough: design and performance
.User-space outreach

«Discussion (on underway/missing pieces)

Linux
Plumbers Conference | publin, Ireland sept 12-14, 2022

\

Why

Background and problem-statement

A Linux
Plumbers Conference | publin, Ireland Sept. 12-14, 2022

%

NVMe Storage

e Rapid growth of new storage interfaces

* New commands
* Directives (streams), Copy (in-device)
* New command sets

=1 £

e ZNS, KV, Computational storage (down the line)

Command Set Specification
(e.g. NVM, Key Value, Zoned Namespace)

NVMe Base Specification

NVMe Management
Interface Specification

Transport Specifications
(e.g. PCle, RDMA, TCP)

* Require close collaboration with the Host
=y

* Predictable latencies, higher endurance

* Reduced CPU/energy consumption

LINUX

The semantic gap

Linux Kernel

e Generic abstractions

* Pro: Help dealing with a variety of devices in the
same fashion

* Con: the semantic gap between device and
application interface. Emerging interfaces may not fit

well within existing OS abstractions (e.g. POSIX)

* Novelty vs Maintenance
* Can evolving/short-lived interfaces become a long-
term maintenance burden
e Can early technology adopters use the upstream

kernel

Plumbers Conference | publin, Ireland sept 12-14, 2022

\

Growing gap

NVMe Storage

* |/O is no longer just ‘classical’ read/write

Read/Write (Direct 10) loctl (nhvme passthrough)

* New constructs continue to emerge

Async Sync
e Zone Append: late binding of written LBA —
Syscall-free submission .
: - (Submission Polling) ~
— * Copy-command: composite read + write
, Interrupt-free 1O X
* Store Keys, Retrieve Values (no concept of LBA) (Completion Polling) ~
Vectored (multi-buffer) ©Q
* More friendly to ‘classical’ read/write Registered file .
(Reuse open handle across °3
* New ‘generic’ syscalls are hard to grow TuipE Hos)
e If the interface can’t fit, it gets punted to ioctl Registered buffer x
18 P (Reuse mapped buffer across ~

— R / /0s)

e |octl: far from all the OS-level advancements that

have gone into read/write syscalls

LiINUX
Plumbers Conference | publin, Ireland sept 12-14, 2022

P

Existing storage |/O paths

* Filesystem IO path

§ Mounted File System || Block Device SPDK * Prioritize stability/robustness over the new features (rightly so)
Q.
0p
= File Block BSPDK * Prefer established technology vs cutting-edge features
& /0 /0 AP
* Block IO path

In-Kernel 1/0 Path

* Conditional: not usable (zero-capacity, hidden, read-only etc.) if a

device does not fit into block-abstraction or contains an

unsupported feature

<:I¢

Kernel Space

Kernel-Bypass I/O Path

 New feature, even if supported (via generic block command),

requires a user interface. Otherwise, it gets punted to ioctl-driven

passthrough

 SPDK 10 path

'. o
Linux * User-space driven; supports fast innovation

Plumbers Conference | publin, Irelc

 Domain-specific, rather than generic

L S

What

The new I/0O path is all about, and how it helps

A Linux
Plumbers Conference | publin, Ireland sept 12-14, 2022

%

New catch-all fast path to NVMe

* NVMe generic char interface

PR re— o
avos | block, s * Solves availability problem
Speak File Speak nvme

speak block e Always comes up regardless of unsupported

features or current/future command-sets

* Nvme-native passthrough: same syscall for any
abstraction

nvme command
Kernel

10 Stack

Block
abstraction * Agility to embrace new technology

¢ NVMe Driver
v v

J/dev/nvmeOnl fdeving[}nl

I * |o_uring driven passthrough
Speak nvme

_ Device =]

 Attaches various io_uring capabilities to any nvme

y Linux command
Plumbers Conference | publin, Ireland sept 1214, 2022

* Solves scalability problem

lo_uring command

e Generic (not nvme) facility to attach io_uring

capabilities for the underlying command

e Co-work with command provider (driver, FS etc.);

Process

) (4) post caE
SQE Return

NVMe driver (from 5.19) and ublk (from 6.0)

| N

Provider
(file_operations)

e User interface

* New opcode: IORING_OP_URING_CMD

* Provider specific opcode: SQE->cmd_op fops->uring cmd(io_uring cmd*, flags)

>
* Place command inline in free space inside SQE; 16

return -EIOCBQUEUED Submission done

/ bytes in regular SQE, 80 bytes in Big SQE

e Result to arrive in CQE

* one result into CQE->res as usual
Q io_uring_cmd_done(io_uring_cmd?®, ret, ret2)

\ ;

Completion done

e S

e Auxiliary result into Big CQE ept. 12-1

Big SQE and Big COQE

* Double the size of regular SQE (128b) * Double the size of regular CQE (64b)

* Setup ring with the flag IORING_SETUP_SQE128 * Setup ring with the flag IORING_SETUP_CQE128

Inwon ' :
R0 3 ub4q user data; /* sge->data submission passed back *

ll’(‘)!‘ I')ff: '," w l“:ff(‘pT 1{—\7‘»(—‘ .’ 1-]’_} * / ‘
I &S : J * r('_\“'l t 4 Ud.‘» f(') r th 1S even 1 &

_.__uﬁi.__dudLQ;.w

S—amp g r§“\““\\-~\\, Provider-specific opcode

164 addr ; /* pounter to buffer or lovecs */

splice fd iwn;
file index;

— 16 more bytes to return extra result

Plumbers Conference | publin, Ireland

loctl-driven NVMe Passthrough

nvme_passthru_cmdé4 {
usd opcode;

flags;

ulé rsvdl;

nsid;

cdwl;

TEY. of s VE K

utd metadata;

ubd addr;

metadata len;

c
o

e Userland prepares “struct nvme_passthru cmd64” (80 bytes)

= O
w W
NN

and sends ioctl with opcode NVME_IOCTL_1064 CMD

o
w
N

__u32 data_len;

#define NVME_IOCTL_ADMIN64 CMD _IOWR('N', ©x47, struct nvme_passthru_cmd64) | —uds vec_cnt;
#define NVME_IOCTL_IO64 CMD _IOWR('N', ox48, struct nvme_passthru cmdé4) cdw10;

cdwll;
cdwl2:
cdwl3;
cdwld;
cdwl5:
timeout _ms;
rsvd2:
result;

w—l

-
W
N

c
W
N

* Submission: Copy command from userspace to Kernel FiicoovitroRIaeT SR ICR TR T e ()}

)

* Completion: Copy result back to userspace f (put user(cmd.result, &ucmd->result))

;“J " -

.
)

Linux
Plumbers Conference | publin, Ireland :

* Prepare new “struct nvme_uring_cmd” and specify new T

ulé
u32

e
o0

opcodes in “sge->cmd_op”

/* 10_uring async commands: */

#define NVME_URING_CMD IO _IOWR('N', ©x80, struct nvme uring_cmd)
#define NVME_URING CMD IO VEC _IOWR('N', ©x81, struct nvme_ uring_cmd)
#define NVME_URING_CMD ADMIN _IOWR('N', ©x82, struct nvme uring _cmd)
#define NVME_URING_CMD ADMIN VEC IOWR('N', ©x83, struct nvme uring cmd)

= &
w Ww
NN

utd
ubd
u32
u32

c
w
N

u32
u32
TEY.
u32
u32

c
w
N

u32

» Zero-copy between user/kernel
e Submission: no copy_from_user (use Big SQE)

 Completion: no put_user (use Big CQE)

struct io_uring_cmd {
struct file *file;

/* callback to defer completions to task context */
vold (*task work cb)(struct io_uring cmd *cmd);

Flumpers Lonrerence | bublin, Ireland Sep

N

lo uring driven nvme passthru

nvme_uring _cmd {

opcode;
flags;
rsvdl;
nsid;
cdw2;
cdw3;
metadata:
addr;
metadata_len;
data_len;
cdwlO;
cdwll;
cdwl2;
cdwl3;
cdwld;
cdwls;
timeout_ms;
rsvd2;

const void *emd; e Zero fast-path allocations

— CRELOR * Reuse pre-allocated memory for any
u32 padJ
us pdu[32]; /* available inline for free use */

bookkeeping

Read using uring-passthrough

nvme urwng cmd(*buft)

First things first: use generic-char dev i (o_ur-lg. squ #sqe
| IO_UFIHQ_LQW "CqQe =
___ nvme urwng cmd *cmd:

 Ask big SQE and big CQE (efficiency) i ettty

|
>
e
=
e
-
D
w
O
m
2
=
=3
=
—
=
oy
O
O
=
=
O
=
Q
O
2

R L Ry N X X E R R N N X R NN X XX R AN N A A AR KR XXX LR -flfi()g = JORING SETUP _S()E 128;
i . _ : ~~ p.flags |= IORING SETUP CQE32;

i NVMe |O/adm|n OpCOdeS : 10 urwng queue wnit(i, &rwng, p.flags);
| ® URING_CMD_IO/IO_VEC E
i » URING_CMD_ADMIN/ADMIN_VEC i

--

sqQe->user data =

--

NVME URING CMD I0;

S ol = ol S S o S S ol S o S S ol S

* J&sqge->cmd ;

—————————————————————————————————————

10 urwng wailt cqel&rung, &cqe);
------------------ §s3Z2 status = cqge->res:
s64 resultl = cqe->blg cqe

Reap completion, and get auxiliary result T 1 printf(Ld\n", . status, resultl):

10 urwng cqe seen(&rung, cqe):

--

e

Upstream status

. . Read/Write (Direct | loctl-nvme-passthru Uring-nvme-
* NVMe Generic device 0) : pagsthru

* |nitial support: 5.13 (June 2021) ASYne Syne ASYne
* Anonymous command-set: 6.0 < bﬁﬁﬁ‘[}?‘.'ésffgﬁ” | |ZI
ubmission Polling
| i \ e Passthrough path (Clgrtr?;gﬁg:lrl?’illlﬁlg) IZI
* lo_uring cmd: 5.19 (July 2022) vectored (multroutien |ZI
* New passthrough for nvme: 5.19 (Reﬁgzts:\dhfgﬁdle EI
* Uring-cmd-poll: scheduled for 6.1 across multiple 1/0s)

Registered buffer V7

(Reuse mapped buffer
across 1/0Os)

Linux
Plumbers Conference | publin, Ireland sept 1214, 2022

\ .

User-space support and tooling

* xXNVMe [1]: new backend for passthru/io_uring cmd
 SPDK: new Bdev that understands io_uring_cmd; upcoming in 22.09 release

e https://github.com/spdk/spdk/commit/6f338d4bf3a8a91b7abe377a605a321ea2b05bf7

» Ublk user-space: uses io_uring cmd, but not the nvme parts

* Libblkio: block device 1/O library. Uses nvme-passthrough. C and RUST binding too [2]

* Nvme-cli: can list and operate on /dev/ngXnY

* Fio: new io engine for io_uring_cmd; Peak-perf test (t/io_uring) support

* Liburing: new tests“test/io_uring passthrough.t

[1] I/O interface independence with xXNVMe: https://dl.acm.org/doi/10.1145/3534056.3534936
[2] https://gitlab.com/libblkio/libblkio

Linux
Plumbers Conference | publin, Ireland sept 12-14, 2022

\ .

https://github.com/spdk/spdk/commit/6f338d4bf3a8a91b7abe377a605a321ea2b05bf7
https://dl.acm.org/doi/10.1145/3534056.3534936

===

* Peak performance test, Optane Gen 2

How does It scale?

* Borrowed from Jens (since my setup shows passthru doing bit better than the block and | can’t believe it)

* t/io_uring -b512 -d128 -c32 -s32 -p0 -F1 -BO -0O0 -P1 -ul -n1 /dev/ng0n1l

M I0PS

6

Base(B)

B+Fixedbufs B+iopoll

enie=Block-10 ==l==Passthru-10

B+FB+iopoll

512b RR Block-10 Passthru-10

Base(B) 2.9 2.37
B+Fixedbufs 3 2.84

B+iopoll 4.04 3.65
B+FB+iopoll 5.09 4,93

e Passthru: absence of batched tag

free/allocation

\ ;

Discussion

& further work items

A Linux
Plumbers Conference | publin, Ireland sept 12-14, 2022

%

NVMe: max 10 size limit

/:il:
Device will have a limit on how large a single IO * These can be higher, but we need to ensure that any command doesn't
* require an sg allocation that needs more than a page of data.

can be. But Driver also has its own limit */ AMB limit
#define NVME_MAX_KB_SZ 4@95/

* |0 with the size 512KB (>4K * 127) fails often; #define WUMFEMOREREGRS 127 T

Due to memory fragmentation. Bit ugly on a

——=
fﬂ'*
device that can support >= 2MB single 10 * Double check that our mempool alloc size will cover the biggest
* command we support.
* Block-path does not face it as 10 splitting is done */

alloc_size = nvme pci_iod alloc _size();
WARN_ON_ONCE(alloc_size > PAGE_SIZE);
by block-layer

dev->iod_mempool = mempool create node(l, mempool kmalloc,

* Current solution: Application should use Tempunlgkfree,
void *) alloc_size,

hugepage backed allocation GFP_KERNEL, node);

* Anything better than that? Something that can

support 4MB limit

ind Sept. 12-14, 2022

.§\\\

nvme-whitelisting

* NVMe driver keeps io/admin commands CAP_SYS ADMIN check, with no regard to file permission bits

ngOn1 appears to be allowing

$ 1s -1 /dev/ng* ’//,/"
crw-rw-rw- 1 root root 242, © Sep 9 19:28 /dev/ngénl unprivileged read/write access,

— | |l CrW------- 1 root root 242, 1 Sep 9 19:20 /dev/ngen2
— | but it does not
* Only a subset of commands are allowed for unprivileged users. Commands used
e Nvme-whitelist (similar to SCS|) :/to format the media, update the firmware, etc. are not permitted.
. bool scsi cmd allowed(unsigned char *cmd, fmode_t mode)
 Move from blanket CAP_SYS ADMIN to fine- {
/* root can do any command. */
. . .. if (capable(CAP_SYS RAWIO
grained control as per file-handle permission cap Petf,m true. &
* Should we consider whitelisting few safe read- case ZBC_IN: > @ read-safe command */

return true,;
_ . . . /* Basic writing commands */
only admin-cmd (e.g. identify) that give case WRITE_6:
case WRITE_10©:
case WRITE_VERIFY:
case WRITE_12:
case WRITE_VERIFY_12:
case WRITE 16:

return (mode & FMODE_WRITE);

—

necessary info for forming io-command (e.g. |ba

format, namespace capacity)

NVMe multipathing

* Enterprise NVMe SSDs may have dual controllers that help in implementing HA
* CONFIG_NVME_MULTIPATH
 nvme driver keeps multipathing (failover, requeue) abstracted from user-space
—_| \ * That is for block path
e Passthrough path
* Current policy: Return failure to userspace so that it can retry the 10 on an alternate path

* Or we go about implementing failover/requeue for passthrough 10 [1]

* Queuing io_uring_cmd (as opposed to bio) was not clean
N 4 And SQE lifetime (submission-only) caused some churn too

[1] https://lore.kernel.org/linux-nvme/20220711110155.649153-1-joshi.k@samsung.com/

Plumbers Conference | publin, Ireland Sept. 12-14, 2022

\ .

https://lore.kernel.org/linux-nvme/20220711110155.649153-1-joshi.k@samsung.com/

LSM for uring-cmd

* Traditional Linux security model is DAC based (root/user/groups/read-write-execute permissions)
* But we also have MAC security model - multiple LSMs implementing MAC (e.g. SELINUX, Smack, Apparmor)
e LSM for uring-cmd:
=l | \ e 5.19 did not have LSM support for uring-cmd
* 6.0 has - SELINUX and Smack hooks. And this is marked to be backported for 5.19 too
* Are there things that we still are missing?

/* 10 _uring async commands: */
* |loctl opcode vs SQE->cmd_op #define NVME_URING_CMD IO _IOWR('N', ©x80, struct nvme uring cmd)

» 32bit ioctl opcode: 2 bits (direction) + 8 bits (type) + 8 bits (hnumber for the type) + 14 (size of argument)
/ * This gives more information to LSM to be fine-granular in its decision-making (i.e. reject less often?)

* For SQE->cmd_op we do not have the format enforced.

FIVITIDEIS COINTEl r1Ce | Dubiin, Ireland Sept. 12-14, 2022

\ .

Towards more efficiency

* DMA pre-mapping support is under discussion. Keith’s patches [1]

* One of the discussion point: requiring new bio type, and corresponding changes in block path

* For passthrough path: DMA cookie goes into io_uring _cmd, and we should be able to skip creating bio
=l \ * Now something more imaginary than real (and if all goes well with the above)
* Connecting nvme and io_uring more directly (both have SQ/CQ interface)

* “direct_queues = X” (like poll _queues) and special ring in io_uring

* \We may just be able to avoid creating ‘struct request’, and core/queue mapping and tag-management can be

part of io_uring ring management

— / [1] https://lore.kernel.org/linux-nvme/20220809064613.GA9040@Ist.de/

Linux
Plumbers Conference | publin, Ireland sept 12-14, 2022

\ .

Thanks

A Linux
Plumbers Conference | publin, Ireland sept 12-14, 2022

%

