

Io_uring command
and

Modern NVMe passthrough

Where are we with the new I/O path: status and plans

Kanchan Joshi

Samsung Semiconductor India Research

⚫First things first: credit where it’s due
⚫ Jens, Christoph, Stefan

⚫ Many other reviewers from io_uring and nvme list

⚫ LSM coverage: Luis, Paul Moore, Casey

Acknowledgements

⚫ Why
⚫ Semantic gap between NVMe and Linux

⚫ How existing passthrough does not help

⚫ What is cemented
⚫Io_uring command: architecture

⚫New nvme passthrough: design and performance

⚫User-space outreach

⚫Discussion (on underway/missing pieces)

Outline

Why

Background and problem-statement

• Rapid growth of new storage interfaces

• New commands

• Directives (streams), Copy (in-device)

• New command sets

• ZNS, KV, Computational storage (down the line)

• Require close collaboration with the Host

• Predictable latencies, higher endurance

• Reduced CPU/energy consumption

The semantic gap

• Generic abstractions

• Pro: Help dealing with a variety of devices in the

same fashion

• Con: the semantic gap between device and

application interface. Emerging interfaces may not fit

well within existing OS abstractions (e.g. POSIX)

• Novelty vs Maintenance

• Can evolving/short-lived interfaces become a long-

term maintenance burden

• Can early technology adopters use the upstream

kernel

NVMe Storage Linux Kernel

• I/O is no longer just ‘classical’ read/write

• New constructs continue to emerge

• Zone Append: late binding of written LBA

• Copy-command: composite read + write

• Store Keys, Retrieve Values (no concept of LBA)

Growing gap
NVMe Storage

• More friendly to ‘classical’ read/write

• New ‘generic’ syscalls are hard to grow

• If the interface can’t fit, it gets punted to ioctl

• Ioctl: far from all the OS-level advancements that

have gone into read/write syscalls

Read/Write (Direct IO) Ioctl (nvme passthrough)

Async Sync

Syscall-free submission

(Submission Polling)

Interrupt-free IO

(Completion Polling)

Vectored (multi-buffer)

Registered file

(Reuse open handle across

multiple I/Os)

Registered buffer

(Reuse mapped buffer across

I/Os)

Linux Kernel

Existing storage I/O paths

• Filesystem IO path

• Prioritize stability/robustness over the new features (rightly so)

• Prefer established technology vs cutting-edge features

• Block IO path

• Conditional: not usable (zero-capacity, hidden, read-only etc.) if a

device does not fit into block-abstraction or contains an

unsupported feature

• New feature, even if supported (via generic block command),

requires a user interface. Otherwise, it gets punted to ioctl-driven

passthrough

• SPDK IO path

• User-space driven; supports fast innovation

• Domain-specific, rather than generic

What

The new I/O path is all about, and how it helps

New catch-all fast path to NVMe

• NVMe generic char interface

• Solves availability problem

• Always comes up regardless of unsupported

features or current/future command-sets

• Nvme-native passthrough: same syscall for any

nvme command

• Agility to embrace new technology

• Io_uring driven passthrough

• Solves scalability problem

• Attaches various io_uring capabilities to any nvme

command

Io_uring command

• Generic (not nvme) facility to attach io_uring

capabilities for the underlying command

• Co-work with command provider (driver, FS etc.);

NVMe driver (from 5.19) and ublk (from 6.0)

• User interface

• New opcode: IORING_OP_URING_CMD

• Provider specific opcode: SQE->cmd_op

• Place command inline in free space inside SQE; 16

bytes in regular SQE, 80 bytes in Big SQE

• Result to arrive in CQE

• one result into CQE->res as usual

• Auxiliary result into Big CQE

Submission done

Completion done

Big SQE and Big CQE

• Double the size of regular SQE (128b)

• Setup ring with the flag IORING_SETUP_SQE128

Provider-specific opcode

Inline cmd (starting offset)

• Double the size of regular CQE (64b)

• Setup ring with the flag IORING_SETUP_CQE128

Ioctl-driven NVMe Passthrough

• Userland prepares “struct nvme_passthru_cmd64” (80 bytes)

and sends ioctl with opcode NVME_IOCTL_IO64_CMD

• Submission: Copy command from userspace to Kernel

• Completion: Copy result back to userspace

Io_uring driven nvme passthru

• Prepare new “struct nvme_uring_cmd” and specify new

opcodes in “sqe->cmd_op”

• Zero-copy between user/kernel

• Submission: no copy_from_user (use Big SQE)

• Completion: no put_user (use Big CQE)

• Zero fast-path allocations

• Reuse pre-allocated memory for any

bookkeeping

Read using uring-passthrough

Upstream status

Read/Write (Direct

IO)

Ioctl-nvme-passthru Uring-nvme-

passthru

Async Sync Async

Syscall-free

submission

(Submission Polling)

Interrupt-free IO

(Completion Polling)

Vectored (multi-buffer)

Registered file

(Reuse open handle

across multiple I/Os)

Registered buffer

(Reuse mapped buffer

across I/Os)

 v7

• NVMe Generic device

• Initial support: 5.13 (June 2021)

• Anonymous command-set: 6.0

• Passthrough path

• Io_uring cmd: 5.19 (July 2022)

• New passthrough for nvme: 5.19

• Uring-cmd-poll: scheduled for 6.1

User-space support and tooling

• xNVMe [1]: new backend for passthru/io_uring_cmd

• SPDK: new Bdev that understands io_uring_cmd; upcoming in 22.09 release

• https://github.com/spdk/spdk/commit/6f338d4bf3a8a91b7abe377a605a321ea2b05bf7

• Ublk user-space: uses io_uring cmd, but not the nvme parts

• Libblkio: block device I/O library. Uses nvme-passthrough. C and RUST binding too [2]

• Nvme-cli: can list and operate on /dev/ngXnY

• Fio: new io engine for io_uring_cmd; Peak-perf test (t/io_uring) support

• Liburing: new tests“test/io_uring_passthrough.t

[1] I/O interface independence with xNVMe: https://dl.acm.org/doi/10.1145/3534056.3534936

[2] https://gitlab.com/libblkio/libblkio

https://github.com/spdk/spdk/commit/6f338d4bf3a8a91b7abe377a605a321ea2b05bf7
https://dl.acm.org/doi/10.1145/3534056.3534936

How does it scale?

• Borrowed from Jens (since my setup shows passthru doing bit better than the block and I can’t believe it)

• Peak performance test, Optane Gen 2

• t/io_uring -b512 -d128 -c32 -s32 -p0 -F1 -B0 -O0 -P1 -u1 -n1 /dev/ng0n1

• Passthru: absence of batched tag

free/allocation

Discussion

& further work items

NVMe: max IO size limit

• Device will have a limit on how large a single IO

can be. But Driver also has its own limit

• IO with the size 512KB (>4K * 127) fails often;

Due to memory fragmentation. Bit ugly on a

device that can support >= 2MB single IO

• Block-path does not face it as IO splitting is done

by block-layer

• Current solution: Application should use

hugepage backed allocation

• Anything better than that? Something that can

support 4MB limit

4MB limit

Much smaller limit

nvme-whitelisting

• NVMe driver keeps io/admin commands CAP_SYS_ADMIN check, with no regard to file permission bits

ng0n1 appears to be allowing

unprivileged read/write access,

but it does not

• Nvme-whitelist (similar to SCSI)

• Move from blanket CAP_SYS_ADMIN to fine-

grained control as per file-handle permission

• Should we consider whitelisting few safe read-

only admin-cmd (e.g. identify) that give

necessary info for forming io-command (e.g. lba

format, namespace capacity)

NVMe multipathing

• Enterprise NVMe SSDs may have dual controllers that help in implementing HA

• CONFIG_NVME_MULTIPATH

• nvme driver keeps multipathing (failover, requeue) abstracted from user-space

• That is for block path

• Passthrough path

• Current policy: Return failure to userspace so that it can retry the IO on an alternate path

• Or we go about implementing failover/requeue for passthrough IO [1]

• Queuing io_uring_cmd (as opposed to bio) was not clean

• And SQE lifetime (submission-only) caused some churn too

[1] https://lore.kernel.org/linux-nvme/20220711110155.649153-1-joshi.k@samsung.com/

https://lore.kernel.org/linux-nvme/20220711110155.649153-1-joshi.k@samsung.com/

LSM for uring-cmd

• Traditional Linux security model is DAC based (root/user/groups/read-write-execute permissions)

• But we also have MAC security model - multiple LSMs implementing MAC (e.g. SELINUX, Smack, Apparmor)

• LSM for uring-cmd:

• 5.19 did not have LSM support for uring-cmd

• 6.0 has - SELINUX and Smack hooks. And this is marked to be backported for 5.19 too

• Are there things that we still are missing?

• Ioctl opcode vs SQE->cmd_op

• 32bit ioctl opcode: 2 bits (direction) + 8 bits (type) + 8 bits (number for the type) + 14 (size of argument)

• This gives more information to LSM to be fine-granular in its decision-making (i.e. reject less often?)

• For SQE->cmd_op we do not have the format enforced.

Towards more efficiency

• DMA pre-mapping support is under discussion. Keith’s patches [1]

• One of the discussion point: requiring new bio type, and corresponding changes in block path

• For passthrough path: DMA cookie goes into io_uring_cmd, and we should be able to skip creating bio

• Now something more imaginary than real (and if all goes well with the above)

• Connecting nvme and io_uring more directly (both have SQ/CQ interface)

• “direct_queues = X” (like poll_queues) and special ring in io_uring

• We may just be able to avoid creating ‘struct request’, and core/queue mapping and tag-management can be

part of io_uring ring management

[1] https://lore.kernel.org/linux-nvme/20220809064613.GA9040@lst.de/

Thanks

