
Linux Plumbers Conference 2022

Contribution ID: 276 Type: not specified

Pollable ptraced pidfds
Wednesday, 14 September 2022 15:00 (1h 30m)

When a process wants to ptrace a child without imposing unacceptable signal-handling latencies, it has to
waitpid() on it, so that when a signal is received it is immediately detected and can be dispatched to the tracee.
But if that process also wants to do anything else at all, it cannot be stuck in waitpid: it must be able to go off
and do that other work. So it must use waitpid(WNOHANG). To avoid even worse latencies if that work takes
time, it is best done in other threads (or processes). But ptracing is thread-specific, and only the ptracing
thread can make changes in the traced process or receive information about it via waitpid(). So when the
other work the process is doing needs any changes to be done in the traced child, the process must inform
the ptracing thread of it, so that thread can make them.

Now if ptrace waitpid()s were pollable via pidfds, you could use one poll() in the ptracing thread to receive
messages about work to be done in the traced child and to get told about changes of state in the traced child
that require attention from the ptracing thread. But right now that is impossible: waitpid() only wakes up
polled pidfds if the pid is an actual child, not a ptracee, and you can only waitpid() on pids, not fds. So the
problem pidfds aim to solve, i.e. that there are two incompatible waiting systems, one for pids and one for
fds, still exists for ptraced children. I think this should be fixed, and fixing it is not hard: but fixing it without
breaking existing users of pidfds might be harder, since they won’t expect ptraced children to wake up poll()ed
pidfds, because they didn’t historically. I have ideas and even working code, but I need some advice about
how to make it upstream- ready: maybe it’s acceptable to break compatibility in this minor way or maybe we
need to do something cleverer. I don’t know. Could anyone advise?

I agree to abide by the anti-harassment policy
Yes

Primary author: ALCOCK, Nick (Oracle Corporation)

Presenter: ALCOCK, Nick (Oracle Corporation)

Session Classification: BOFs Session

Track Classification: Birds of a Feather (BoF)


