

ptrace()-friendly pidfds

Nick Alcock, Oracle Corporation

The problem
When using ptrace(), a common pattern is to loop in
waitpid() so that signals dispatched to the process, syscalls
it’s doing (when using PTRACE_O_TRACESYSGOOD)
and other such things are processed rapidly.

But waitpid() does not compose with anything else: you
can’t poll() at the same time etc, even if you want to do
other things (like receive messages from other parts of
your process, perhaps instructions to the ptracer) at the
same time, in the same thread.

The problem

This is what pidfds exist to solve! But when a
waitpid() is coming from ptrace(), it suddenly
stops working: the rather strange thread-
directed waitpids that ptrace produces are not
dispatched to pidfds.

No obvious alternative
Casey Dahlin wrote a predecessor to pidfds called waitfd
which was rejected in part on the grounds that it was
redundant: you could always waitpid() in a separate
thread.

This is almost right, but when ptracing, waitpids from
ptraced children are directed to the thread that did the
ptrace, not to the whole process.

So you cannot do this in a separate thread.

Implementation trivial?
Fixing this is very simple: see

But this is an unavoidable behavioural change: callers that
are ptracing and using pidfds in the same thread will now
see new wakeups they never did before. Is this sort of
thing acceptable? Adding a flag to make the behaviour
optional seems difficult, but equally it seems unlikely to
break too many users

https://github.com/oracle/dtrace-linux-kernel/commit/96db4343b9d94299f

https://github.com/oracle/dtrace-linux-kernel/commit/96db4343b9d94299f

… but maybe still problems
The implementation at the link has problems, notably
that if one non-ptracer has a pidfd on some process that
a ptracer also has one on, both will be woken up.

Fixing this likely requires multiple classes of pidfds, so
we can wake up only the ‘ptrace class’. This suddenly
means pidfds are more than just stuffed into a
private_data and need their own allocation lifetime and
my head hurts.

… but maybe still problems

One last problem! Not only are ptrace waits
thread-directed, you can ptrace single threads.
This suddenly means that (this class of) pidfd
might not have the thread-group-leader
restriction that all others have. I don’t know
what implications this might have. Why does
this restriction exist in the first place?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

