
Closing the BPF map
permission loophole

Lorenz Bauer <i@lmb.io>
Maintainer github.com/cilium/ebpf

mailto:i@lmb.io
https://github.com/cilium/ebpf

Contents

● Origin story
● Access control of BPF maps
● Break things

Background

● Used to work for Cloudflare, all things BPF
● github.com/cloudflare/tubular: a CLI for “BSD sockets on steroids”

○ Listen on all ports on an IP address!
● Built on sk_lookup mentioned by Martin Lau yesterday

https://github.com/cloudflare/tubular

Give read-only access to unprivileged users

$ tubectl status

opened dispatcher at /sys/fs/bpf/4026531840_dispatcher

Bindings:

 protocol prefix port label

 tcp 127.0.0.0/8 0 foo

Destinations:

 label domain protocol socket lookups misses errors

 foo ipv4 tcp sk:- 0 0 0

Tubular stores state in /sys/fs/bpf

$ ls -l /sys/fs/bpf/4026531840_dispatcher

total 0

-rw-r----- 1 tubular tubular 0 Aug 23 14:40 bindings

-rw-r----- 1 tubular tubular 0 Aug 23 14:40 destination_metrics

-rw-r----- 1 tubular tubular 0 Aug 23 14:40 destinations

-rw-r----- 1 tubular tubular 0 Aug 23 14:40 link

-rw-r----- 1 tubular tubular 0 Aug 23 14:40 program

-rw-r----- 1 tubular tubular 0 Aug 23 14:40 sockets

Read-only access via BPF_OBJ_GET

BPF_OBJ_GET(/sys/fs/bpf/…/bindings, BPF_F_RDONLY) = fd

Ways to restrict modifications of BPF maps

From syscall From BPF program

Per map bpf(BPF_MAP_FREEZE) BPF_F_RDONLY_PROG, …

Per fd BPF_F_RDONLY, …

Per pinned file chmod(2) N/A

This slide contains a lie.

Where are permissions kept?

From syscall From BPF program

Per map struct bpf_map->frozen struct bpf_map->map_flags

Per fd struct fd->f_mode

Per pinned file struct inode->i_mode N/A

Given a read-only map fd, …

Given a read-only map fd, …
1. it’s not possible to modify the map

Given a read-only map fd, …
1. it’s not possible to modify the map
2. it’s not possible to obtain a read-write fd

Read-only map fds can be modified via BPF program

1. Take a read-only map fd
2. Craft a BPF program that calls bpf_map_update_elem(read-only fd)
3. Load the program
4. Execute the program (PROG_RUN, etc.)

Reason: verifier doesn’t check per fd permissions

From syscall From BPF program

Per map struct bpf_map->frozen struct bpf_map->map_flags

Per fd struct fd->f_mode NOPE☠
Per pinned file struct inode->i_mode N/A

This slide contains no more lies.

Fix #1: Refuse map fd which is not read-write

Pro:

● Very simple
● Backportable?
● High risk of breaking users

○ However, test_progs and test_maps are happy

Con:

● BPF programs that only read are rejected

Fix #2: Track map permissions using bpf_type_flag

--- a/include/linux/bpf.h
+++ b/include/linux/bpf.h
@@ -397,6 +397,9 @@ enum bpf_type_flag {

 /* DYNPTR points to a ringbuf record. */
 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
+
+ /* MEM is write-only. Used with map values. */
+ MEM_WRONLY = BIT(10 + BPF_BASE_TYPE_BITS),

 __BPF_TYPE_FLAG_MAX,
 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,

Fix #2: Store bpf_type_flag in bpf_reg_type

dst_reg->type = PTR_TO_MAP_VALUE | MEM_RDONLY;

dst_reg->type = PTR_TO_MAP_VALUE | MEM_WRONLY;

dst_reg->type = PTR_TO_MAP_VALUE;

Fix #2: Track map permissions using bpf_type_flag

Pro:

● Less likely to break users
● BPF programs that only read are accepted

Con:

● Definitely no backport
● Requires auditing PTR_TO_MAP_VALUE, possibly others
● I don’t trust myself to pull this off without help

Opinions?

Given a read-only map fd, …
1. it’s not possible to modify the map
2. it’s not possible to obtain a read-write fd

Read-only map fds can be made read-write

1. Take a read-only map fd
2. BPF_OBJ_PIN into /sys/fs/bpf
3. Open pinned map with open_flags == 0

Reason: BPF_OBJ_PIN doesn’t check fd permissions

● It’s possible to pin a read-only fd
● Pinned inode is always owned by current user
● Pinned inode always has o+rw permissions

NB: same problem applies to pinned programs and links.

Fix #1: enforce that fd is R/W in BPF_OBJ_PIN

Pro:

● Simple
● test_progs and test_maps are happy

Con:

● It’s impossible to pin a map created with BPF_F_RDONLY, BPF_F_WRONLY
○ Pin R/W + chmod() still possible though

Fix #2: adjust permissions + prevent chmod() escalation

● In BPF_OBJ_PIN, adjust created file permissions to match fd->f_mode
○ Read-only fd leads to o=r file instead of o=rw

● In chmod(2), prevent raising permissions
○ From o=rw to o=r / o=w is OK
○ From o=r to o=rw / o=w is not OK

Fix #2: adjust permissions + prevent chmod() escalation

Pro:

● Allows pinning BPF_F_RDONLY, … fds
● Probably less likely to break user space

Con:

● Somewhat weird chmod semantics
● Other ways to change file mode?

More opinions?

Thanks!

