
OPENED Tool for Managing eBPF
Heterogeneity

Theophilus A. Benson Brown University tab@cs.brown.edu
Palanivel Kodeswaran IBM Research palani.kodeswaran@in.ibm.com
Sayandeep Sen IBM Research sayandes@in.ibm.com

Microservices Observatory (microserviceobservatory.github.io)

One Off Programs

eBPF Programs are Monoliths

Observability

Complex Codebase(s)

Network Functions
*Code from a Katran function

Developing a new program

Implications of Monolith on Developer Productivity

Find sub functionality on
GitHub

Extracting and reusing functionality
is non-trival

Surprise Step 3:
Rewrite for your
target hookpoint

Step 1: Extract lines
Step 2: Identify +
Extract Deps

The OPENED Vision

Select eBPF
function of interest

Transform
Function

OPENED Framework
eBPF Developer

Extract
Function

Extends/Builds on
Transformed Function

eBPF Developer

OPENED Vision: Reduce time to new functionality
development

● Automated extraction of relevant code

● Automated transformation of code
○ Enable moving code between hook-points
○ Enable moving code between programs

● Developer-first automation
○ Extraction + Transformation guided by developer choices

Road Map

● Extraction

● Transformation

● Demo

● Call to Arms

Extract eBPF func as an independently loadable module

● Identify all dependencies of the eBPF function

○ Dependencies: function call graph, Maps & associated structures, header files

○ Extract relevant dependencies while

■ Ensuring correctness and minimizing technical debt

● Caveat: original code must pass verification

fn1()

fn2()

fn()

fn4()

fn()
fn()

fn()
fn3()

fn1()
fn1()

fn1()fn6()
fn5()
fn21

/SEC("decap")
int xdpdecap(struct xdp_md* ctx) {

Extraction

Challenge: Dependency Extraction
Function Dependencies

● Extended codequery tool[1],

○ Recursively identify function call graph

○ Uses cscope and ctags and sqlite internally

● Used TXL source transformation tool to annotate the function definitions

● Python script to extract functions and header files

fn1()

fn2()

fn()

fn4()

fn()
fn()

fn()
fn3()

fn1()
fn1()

fn1()fn6()
fn5()
fn21

…
fn3.1()
fn3()
fn2()
fn1()
…

extracted.c

/* Extracted from
 /root/github/demo_lpc/
codequery/katran/decap_kern.c startLine: 223
endLine: 247 */
SEC("decap")
int xdpdecap(struct xdp_md* ctx) {

/SEC("decap")
int xdpdecap(struct xdp_md* ctx) {

Challenge: Dependency Extraction

Map Definitions

● eBPF specific method of tracking
bpf_map_update/lookup_elem while parsing call flow graph

● TXL code transformation tool toannotate maps and other data structures needed
● Python script to extract structures

bpf_map_lookup_elem(&decap_dst,..)

bpf_map_update_elem(lru_map,...);

fn1()

fn2()

fn()

fn4()

fn()
fn()

fn()
fn3()

fn1()
fn1()

fn1()fn6()
fn5()
fn21

…
Struct lru_map{};
Struct decap_dst{}
…

extracted.c

Challenge: Dependency Extraction

{#funcName,count,[FileName,lineNumber]}
.....
increment_quic_cid_version_stats,1,[<dir...>/balancer_kern.c,445]
increment_quic_cid_drop_no_real,1,[<dir...>/balancer_kern.c,460]
process_l3_headers,2,[<dir...>/balancer_kern.c,158],[<dir...>/decap_kern.c,34]
increment_quic_cid_drop_real_0,1,[<dir...>/balancer_kern.c,470]
process_encaped_ipip_pckt,2,[<dir...>/balancer_kern.c,340],[<dir...>/decap_kern.c,85]
parse_udp,1,[<dir...>/pckt_parsing.h,76]
REPORT_PACKET_TOOBIG,2,[<dir...>/introspection.h,32],[<dir...>/introspection.h,40]
.....

Annotated Function Call Graph

 Multiple declaration of dependencies (both maps & functions)

Preserve MACRO Definitions during Extraction

#ifdef GLOBAL_LRU_LOOKUP

__attribute__((__always_inline__)) static inline bool
reals_have_same_addr(
 struct real_definition* a,

 struct real_definition* b) {
 ...
 ...
}

__attribute__((__always_inline__)) static inline int
perform_global_lru_lookup(
 struct real_definition** dst,
 struct packet_description* pckt,..){
 ...
 ...
}

#endif // GLOBAL_LRU_LOOKUP

balancer_kern.c
#ifdef GLOBAL_LRU_LOOKUP
/* Extracted from balancer_kern.c startLine: 261 endLine: 277 */
__attribute__((__always_inline__)) static inline bool
reals_have_same_addr(
 struct real_definition* a,
 struct real_definition* b) {
 ...
 ...
}
#endif
#ifdef GLOBAL_LRU_LOOKUP
/* Extracted from balancer_kern.c startLine: 279 endLine: 337 */
__attribute__((__always_inline__)) static inline int
perform_global_lru_lookup(
 struct real_definition** dst,
 struct packet_description* pckt,..){
 ...
}

#endif // GLOBAL_LRU_LOOKUP

extracted.c

Identify and propagate preprocessor guards into extracted code

Challenge: Minimize Code Debt
● Maintain ordering between definitions and invocations

● Propagate license into newly created c file (with extracted code).
● Identify and copy relevant current directory includes into extraction site.

○ Introduce preprocessor guards in new header files

● Rewrite Makefiles (currently Manual).

#include balancer_const.h”

#IFDEF BALANCER_CONST_ OPF

#ENDIF

#include balancer_const.h”

Road Map

● Extraction

● Transformation

● Demo

● Call to Arms

Developing a new program

Implications of Monolith on Developer Productivity

Find sub functionality on
GitHUB

Extracting and reusing functionality
in non-trival

Surprise Step 3:
Rewrite for your
target Hookpoint

Step 1: Extract lines
Step 2: Identify +
Extract Deps

Nuances of Hookpoint Transformation

● Code written for one hookpoint does not port to another trivially

○ Different Header files, Actions, Information source & Helper functions

● Some capabilities are hookpoint specific , e.g., bpf_redirect_maps

● However, some capabilities are overlapping, e.g., access to 5-tuple

■ Even if expressed differently [They are portable]

*Talk to us for more transformation use cases

Our Solution for Hookpoint Transformation

● Code written for one hookpoint does not port to another trivially

○ Different Header files, Actions, Information source & Helper functions

● Some capabilities are hookpoint specific , e.g., bpf_redirect_maps

● However, some capabilities are overlapping, e.g., access to 5-tuple

■ Even if expressed differently [They are portable]
● Database of domain specific functionality mapping between hookpoints

○ Currently working only for XDP ⇒ TC

○ Transformation rules written in using Coccinelle and TXL

● Report error, if transformation is unknown
*Talk to us for more transformation use cases

Transformation*

• Porting Header files is trivial
• Include/Exclude headers e.g.,

#include <linux/pkt_cls.h> for XDP⇒TC

• Porting Actions is straightforward, E.g.,
• DROP and PASS are transformable

• XDP_DROP ⇒ TC_ACT_SHOT
• XDP_PASS ⇒ TC_ACT_OK

• XDP_TX is hookpoint specific,
and does not port, report Error

*Talk to us for more transformation use cases

rule replaceXDP_DROP
 replace [token]
 XDP_DROP
 by
 TC_ACT_SHOT
end rule

rule replaceXDP_PASS
 replace [token]
 XDP_PASS
 by
 TC_ACT_OK
end rule

TXL Rule snippet

Porting information source is straightforward,

• (If available) Replace with information source
• [XDP]eth- >h_proto ⇒ ctx->protocol [TC]
• [XDP] vlan_hdr->h_vlan_TCI ⇒ ctx->vlan_tci [TC]

@replaceethproto@
identifier p,c,fn;
type t;
struct ethhdr *e;
@@
t fn(struct __sk_buff *ctx){
...
- e->h_proto
+ ctx->protocol
...
}

Transformation*

Coccinelle Rule snippet

*Talk to us for more transformation use cases

Transformation*

Porting helper functions is non-trivial

• Simple: static transformation rules, E.g.,

• bpf_redirect() ports from XDP to TC
with FLAG set to ingress

• Complex: developer must introduce new
rules based on intended use

• bpf_xdp_adjust_head(E1,E2) ⇒
bpf_skb_adjust_room(E1,E2,
BPF_ADJ_ROOM_MAC,

BPF_F_ADJ_ROOM_ENCAP_L3_IPV4/IPV6)

*Talk to us for more transformation use cases

@replacexdpadjust@
expression E1,E2;
@@
- bpf_xdp_adjust_head(E1,E2)
+bpf_skb_adjust_room(E1,E2,BPF_
ADJ_ROOM_MAC,BPF_F_ADJ_ROO
M_ENCAP_L3_IPV4)

Coccinelle Rule snippet

Current Prototype
● Extraction: 1448-LoC

○ 251 LoC TXL[1] (Grammar specification)

○ 547 Extended Codequery[3]

● Transformation: 200-LoC

○ 74 LoC in Coccinelle[2]

○ 68 LoC in TXL
● Extracted and transformed functions within Meta’s Katran, Mizar, Suricata,

Cloudflare’s XDP_drop
[1] http://txl.ca/

[2] https://coccinelle.gitlabpages.inria.fr/

[3]https://github.com/ruben2020/codequery

Road Map

● Extraction

● Transformation

● Demo

● Call to Arms

DEMO

Road Map

● Extraction

● Transformation

● Demo

● Call to Arms

Future Plans

• Decompose convert open source programs into L3AF/Polycube/BPFD modules
• Expand the set of supported transformation rules
• Improve usability of our framework

Select eBPF func Transform
Function

OPENED FrameworkeBPF Developer

Extract
Function

Extend on Func

eBPF Developer

Join the OPENED Community
(DevTools for Supporting Modular eBPF Programs)

Join Us!
Submit your use cases for programs to be decomposed

Microservices Observatory (microserviceobservatory.github.io)

Select eBPF func Transform
Function

OPENED FrameworkeBPF Developer

Extract
Function

Extend on Func

eBPF Developer

