
Pressure Feedback
for LRU Maps Joe Stringer

Isovalent

Agenda

● Background
● eBPF LRU hashmap deep dive
● Discussion

2

It all starts with an incident…

● Packets are being dropped after a production upgrade
● Two curious clues upon closer inspection:

○ Policy drops for packets towards ephemeral port range
○ "CT Map insertion failure" metric count.

● At the time, no metrics for flow count directly
○ Churn on CT map? Eyeballed at 10Ks of entries

changing in seconds in a ~250K size map

3

Cilium's connection tracker

● Implement CT via LRU hashmap for firewall & NAT
● Properties we like?

○ Hash table properties
○ Garbage collect as you go

4

Cilium's connection tracker

● Implement CT via LRU hashmap for firewall & NAT
● Properties we like?

○ Hash table properties
○ Garbage collect as you go

● Difficulties?
○ Understanding current contention + signalling impact
○ LRU doesn't respect Cilium timers
○ Tied fates for CT and NAT?

5

Contention
Cause

> We have identified the primary cause of the drops as a set of
very connection-heavy ingress pods that ended up overflowing
the conntrack tables on select nodes. By spreading these
ingresses more evenly using anti-affinity rules, we have
eliminated the most negative effects and stabilized the env.

6

Contention
How do we make this more obvious?

● Strong signal: CT Map insertion failure
○ Count: 14 instances over hours.
○ Not sensitive enough?

● How "full" is the map?
○ High rate of change. Can dump & count (expensive)
○ Inc counter on insert, dec counter on delete?

■ LRU doesn't allow us to count delete by LRU
■ As soon as table is full, cannot track how full.

7

Idea: Signal in return code
--- a/include/uapi/linux/bpf.h

+++ b/include/uapi/linux/bpf.h

@@ -1570,6 +1574,13 @@ union bpf_attr {

 * **BPF_ANY**

 * No condition on the existence of the entry for *key*.

+ * **BPF_F_PRESSURE**

+ * If the update would successfully replace an existing

+ * entry per the map properties, this helper replaces the

+ * entry and returns **-EINPROGRESS**. This flag is only

+ * valid for the following map types:

+ * * **BPF_MAP_TYPE_LRU_HASH**

+ * * **BPF_MAP_TYPE_LRU_PERCPU_HASH**

 *

 * Flag value **BPF_NOEXIST** cannot be used for maps of types
8

LRU deep dive

Structure

10

Structure
Pop_free + Rotate N

11

Structure
Shrink N (typical)

12

LRU Update
Priority order for finding a "least recent" entry

13

LRU Update
Initial updates in preallocated map

14

…

LRU Update
No entries available on local CPU. Rotate global list.

15

…

…

LRU Update
Global freelist did not have FREE_TARGET entries. Shrink.

16

…

…

LRU Update
Despite shrink, no inactive entries identified. Steal from global map.

17

…

…

LRU Update
Stole an entry, foiled by htab contention. Steal from another CPU.

18

…

Discussion

20

Ideal range: sufficient free entries
on local CPU, or easy to rotate
entries out to local CPU.

GC kicks in. Start using htab lock.
Additional contention?

Unable to locate any inactive
entries globally, so just start
stealing new ones from free or
pending lists regardless if active.

Start to panic - choose any entry.
Fails if cannot delete any entry
from htab.

21

Ideal range: sufficient free entries
on local CPU, or easy to rotate
entries out to local CPU.

GC kicks in. Start using htab lock.
Additional contention?

Start to panic - choose any entry.
Fails if cannot delete any entry
from htab.

Unable to locate any inactive
entries globally, so just start
stealing new ones from free or
pending lists regardless if active.

We monitor these today. High
signal, low frequency.

22

Ideal range: sufficient free entries
on local CPU, or easy to rotate
entries out to local CPU.

GC kicks in. Start using htab lock.
Additional contention?

Unable to locate any inactive
entries globally, so just start
stealing new ones from free or
pending lists regardless if active.

Count every implicit delete
Report usage: % utilization
Weak signal: map full

We monitor these today. High
signal, low frequency.

Start to panic - choose any entry.
Fails if cannot delete any entry
from htab.

23

Ideal range: sufficient free entries
on local CPU, or easy to rotate
entries out to local CPU.

GC kicks in. Start using htab lock.
Additional contention?

Unable to locate any inactive
entries globally, so just start
stealing new ones from free or
pending lists regardless if active.

Count every implicit delete
Report usage: % utilization
Weak signal: map full

Count shrink runs or shrinked
count?
~GC rate?

We monitor these today. High
signal, low frequency.

Start to panic - choose any entry.
Fails if cannot delete any entry
from htab.

24

Ideal range: sufficient free entries
on local CPU, or easy to rotate
entries out to local CPU.

GC kicks in. Start using htab lock.
Additional contention?

Unable to locate any inactive
entries globally, so just start
stealing new ones from free or
pending lists regardless if active.

Count every implicit delete
Report usage: % utilization
Weak signal: map full

Count shrink runs or shrinked
count?
~GC rate?

We monitor these today. High
signal, low frequency.

Start to panic - choose any entry.
Fails if cannot delete any entry
from htab.

Use N / FREE_TARGET
proportion as a signal of
contention?

25

Ideal range: sufficient free entries
on local CPU, or easy to rotate
entries out to local CPU.

GC kicks in. Start using htab lock.
Additional contention?

Unable to locate any inactive
entries globally, so just start
stealing new ones from free or
pending lists regardless if active.

Count every implicit delete
Report usage: % utilization
Weak signal: map full

Count shrink runs or shrinked
count?
~GC rate?

We monitor these today. High
signal, low frequency.

Start to panic - choose any entry.
Fails if cannot delete any entry
from htab.

Use N / FREE_TARGET
proportion as a signal of
contention?

Report whether active entry
was stolen from inactive /

active list? Details…

🎣 Or something more drastic?
From 3a08c2fd763450a927d1130de078d6f9e74944fb Mon Sep 17 00:00:00 2001

From: Martin KaFai Lau <kafai@fb.com>

Date: Fri, 11 Nov 2016 10:55:06 -0800

Subject: [PATCH] bpf: LRU List

Introduce bpf_lru_list which will provide LRU capability to

the bpf_htab in the later patch.

* General Thoughts:

1. Target use case. Read is more often than update.

 (i.e. bpf_lookup_elem() is more often than bpf_update_elem()).

 If bpf_prog does a bpf_lookup_elem() first and then an in-place

 update, it still counts as a read operation to the LRU list concern. 26

27

@ciliumproject
@joestringernz

