

HID-BPF

benjamin.tissoires@{redhat|gmail}.com

2 / 41

Benjamin Tissoires

Red Hat

Foreword
still a WIP, but getting closer (v10 is the latest, targetting v6.2)

API mostly designed but still missing a few bits

3 / 41

HID-BPF == HID+BPF

HID

BPF

HID-BPF: why?

HID-BPF: what?

HID-BPF: how?

4 / 41

Agenda

HID, a Plug & Play protocol

5 / 41

HID?
Human Interface Devices

Win 95 era protocol for handling plug and play USB devices (mice, keyboards)

now Bluetooth, BLE, I2C, Intel/AMD Sensors, (SPI in-progress)

Most devices nowadays are working with generic drivers

6 / 41

HID?
Human Interface Devices

Win 95 era protocol for handling plug and play USB devices (mice, keyboards)

now Bluetooth, BLE, I2C, Intel/AMD Sensors, (SPI in-progress)

Most devices nowadays are working with generic drivers

For that, they rely on HID report descriptors.

6 / 41

HID report descriptor
describes the device protocol in a "simple" language (no loops, conditionals, etc…)

static for each device (in �ash)

7 / 41

1 0x05, 0x01, // Usage Page (Generic Desktop)
2 0x09, 0x02, // Usage (Mouse)
3 0xa1, 0x01, // Collection (Application) <-- Application(Mouse)
4 0x09, 0x01, // Usage (Pointer)
5 0xa1, 0x00, // Collection (Physical) <-- Physical(Pointer)
6 0x05, 0x09, // Usage Page (Button)
7 0x15, 0x00, 0x25, 0x01, 0x19, 0x01, 0x29, 0x05, // Logical Min/Max and Usage Min/Max
8 0x75, 0x01, // Report Size (1) <- each usage is 1 bit
9 0x95, 0x05, // Report Count (5) <- we got 5 of them

10 0x81, 0x02, // *Input* (Data,Var,Abs) <--- 5 bits for 5 buttons
11 0x95, 0x03, // Report Count (3)
12 0x81, 0x01, // *Input* (Cnst,Arr,Abs) <--- 3 bits of padding
13 0x05, 0x01, // Usage Page (Generic Desktop)
14 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, // Logical Min/Max
15 0x09, 0x30, // Usage (X)
16 0x09, 0x31, // Usage (Y)
17 0x75, 0x10, // Report Size (16)
18 0x95, 0x02, // Report Count (2)
19 0x81, 0x06, // *Input* (Data,Var,Rel) <--- X,Y of 16 bits
20 0x15, 0x81, 0x25, 0x7f, // Logical Min/Max (-127,127)
21 0x09, 0x38, // Usage (Wheel)
22 0x75, 0x08, // Report Size (8)
23 0x95, 0x01, // Report Count (1)
24 0x81, 0x06, // *Input* (Data,Var,Rel) <--- Wheel of 8 bits
25 0x05, 0x0c, // Usage Page (Consumer Devices)
26 0x0a, 0x38, 0x02, // Usage (AC Pan)
27 0x95, 0x01, // Report Count (1)
28 0x81, 0x06, // *Input* (Data,Var,Rel) <--- AC Pan of 8 bits

Documentation
Device Class De�nition

HID Usage Tables

8 / 41

https://www.usb.org/document-library/device-class-definition-hid-111
https://www.usb.org/document-library/hid-usage-tables-13

Device Class De�nition

last update: May 27, 2001

there are the equivalent �les for I2C, Bluetooth, BLE, SPI

de�nes generic protocol that every HID device must speak

operational model

descriptors (USB + HID report descriptor)

parser of report descriptors

requests

report protocol

9 / 41

https://www.usb.org/document-library/device-class-de�nition-hid-111

https://www.usb.org/document-library/device-class-definition-hid-111

Device Class De�nition

last update: May 27, 2001

there are the equivalent �les for I2C, Bluetooth, BLE, SPI

de�nes generic protocol that every HID device must speak

operational model

descriptors (USB + HID report descriptor)

parser of report descriptors

requests

report protocol

The protocol is somewhat stable.

9 / 41

https://www.usb.org/document-library/device-class-de�nition-hid-111

https://www.usb.org/document-library/device-class-definition-hid-111

HID Usage Tables

last update: March 1, 2022

de�nes meaning of usages as de�ned in the report descriptor

X and Y are de�ned in the Generic Desktop page (0x01) as 0x30 and 0x31

can be extended (and is) by companies

multitouch protocol

USI pens

HW sensors

except for a few exceptions: an update means a new #define in the kernel if we care

10 / 41

https://www.usb.org/document-library/hid-usage-tables-13

` `

https://www.usb.org/document-library/hid-usage-tables-13

HID
Most devices nowadays are working with generic drivers

11 / 41

HID
Most devices nowadays are working with generic drivers

Except for a few of them that need:

11 / 41

HID
Most devices nowadays are working with generic drivers

Except for a few of them that need:

a �xup in the report descriptor (45 drivers out of 82)

hid-sigmamicro.c in v5.17

11 / 41

` `

HID
Most devices nowadays are working with generic drivers

Except for a few of them that need:

a �xup in the report descriptor (45 drivers out of 82)

hid-sigmamicro.c in v5.17

41 �les are under 100 LoC (counted with cloc)

11 / 41

` `

HID
Most devices nowadays are working with generic drivers

Except for a few of them that need:

a �xup in the report descriptor (45 drivers out of 82)

hid-sigmamicro.c in v5.17

41 �les are under 100 LoC (counted with cloc)

some driver just change the input mapping (i.e. to enable a given key)

hid-razer in v5.17

11 / 41

` `

` `

HID
Most devices nowadays are working with generic drivers

Except for a few of them that need:

a �xup in the report descriptor (45 drivers out of 82)

hid-sigmamicro.c in v5.17

41 �les are under 100 LoC (counted with cloc)

some driver just change the input mapping (i.e. to enable a given key)

hid-razer in v5.17

After attending a few Kernel Recipes editions in Paris: "Can eBPF help?"

11 / 41

` `

` `

HID+BPF

Use BPF in HID drivers to have user-space drivers �xes in the kernel

12 / 41

HID-BPF: base principles
works only on arrays of bytes and talks HID

no access to input, or any other subsystems (LEDs, force feedback, …)

any smart processing needs to be done in userspace or at programming time:

parse HID report descriptor

compute location of various �elds

targets a speci�c device for a given program

enforces GPL programs

simple �xes should be shipped in-tree

13 / 41

HID-BPF: why?
more convenient to do simple �xes and user testing

HID �rewall

change the device based on the user context

tracing

14 / 41

HID-BPF: why?
more convenient to do simple �xes and user testing

HID �rewall

change the device based on the user context

tracing

15 / 41

HID: what it means to add a new quirk?

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

new patch created + tests

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

new patch created + tests

user needs to recompile the kernel

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

new patch created + tests

user needs to recompile the kernel

submission on the LKML

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

new patch created + tests

user needs to recompile the kernel

submission on the LKML

review of the patch

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

new patch created + tests

user needs to recompile the kernel

submission on the LKML

review of the patch

inclusion in branch

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

new patch created + tests

user needs to recompile the kernel

submission on the LKML

review of the patch

inclusion in branch

patch goes into Linus’ tree

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

new patch created + tests

user needs to recompile the kernel

submission on the LKML

review of the patch

inclusion in branch

patch goes into Linus’ tree

kernel marked stable or patch backported in stable

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

new patch created + tests

user needs to recompile the kernel

submission on the LKML

review of the patch

inclusion in branch

patch goes into Linus’ tree

kernel marked stable or patch backported in stable

distributions take the new kernel

16 / 41

Spoiler alert: regular kernel development…

HID: what it means to add a new quirk?

identi�cation of the issue

new patch created + tests

user needs to recompile the kernel

submission on the LKML

review of the patch

inclusion in branch

patch goes into Linus’ tree

kernel marked stable or patch backported in stable

distributions take the new kernel

user can drop the custom kernel build

16 / 41

Spoiler alert: regular kernel development…

HID: Adding a new quirk with BPF
identi�cation of the issue

new patch BPF program created + tests

user needs to recompile the kernel drops the bpf program into the �lesystem

17 / 41

HID: Adding a new quirk with BPF
identi�cation of the issue

new patch BPF program created + tests

user needs to recompile the kernel drops the bpf program into the �lesystem

data contains the report descriptor of the device.

hid_bpf_rdesc_fixup() is executed once, once the device is exported to userspace.

17 / 41

1 SEC("fmod_ret/hid_bpf_rdesc_fixup")
2 int BPF_PROG(rdesc_fixup, struct hid_bpf_ctx *hid_ctx)
3 {
4 __u8 *data = hid_bpf_get_data(hid_ctx, 0, 4096 /* size */);
5
6 /* Convert Input item from Const into Var */
7 data[40] = 0x02;
8
9 return 0;

10 }

` `

` `

HID: Adding a new quirk with BPF
identi�cation of the issue

new patch BPF program created + tests

user needs to recompile the kernel drops the bpf program into the �lesystem

User implication stops here once the BPF program is accepted.

18 / 41

HID: Adding a new quirk with BPF
identi�cation of the issue

new patch BPF program created + tests

user needs to recompile the kernel drops the bpf program into the �lesystem

User implication stops here once the BPF program is accepted.

Developers continue to include and ship the �x in the kernel

18 / 41

HID-BPF: why?
more convenient to do simple �xes and user testing

HID �rewall

Steam opens up game controllers to the world (with uaccess)

SDL is happy with that

What prevents a Chrome plugin to initiate a controller �rmware upgrade over the network?

change the device based on the user context

tracing

19 / 41

` `

HID-BPF: why?
more convenient to do simple �xes and user testing

HID �rewall

Steam opens up game controllers to the world (with uaccess)

SDL is happy with that

What prevents a Chrome plugin to initiate a controller �rmware upgrade over the network?

change the device based on the user context

Microsoft Surface Dial example

tracing

20 / 41

` `

HID-BPF: why?
more convenient to do simple �xes and user testing

HID �rewall

Steam opens up game controllers to the world (with uaccess)

SDL is happy with that

What prevents a Chrome plugin to initiate a controller �rmware upgrade over the network?

change the device based on the user context

Microsoft Surface Dial example

tracing

hidraw is good, but not enough

we can trace external requests with eBPF

21 / 41

` `

HID-BPF: what?

22 / 41

HID-BPF: the net-like capability

BPF program, compiled by clang:

Yes, this is a tracing BPF program.

Note: this is executed before hidraw or any driver processing.

23 / 41

Change the incoming data �ow

1 SEC("fmod_ret/hid_bpf_device_event")
2 int BPF_PROG(invert_x, struct hid_bpf_ctx *hid_ctx)
3 {
4 __s16 *x = (__s16*)hid_bpf_get_data(hid_ctx, 1 /* offset */, 2 /* size */);
5
6 /* invert X coordinate */
7 *x *= -1;
8
9 return 0;

10 }

` `

HID-BPF: attach our program to a device

24 / 41

A program is attached to a struct hid_device in the kernel, by using the system unique id to

attach to it (to be triggered by udev):

` `

1 struct attach_prog_args {
2 int prog_fd;
3 unsigned int hid;
4 unsigned int flags;
5 int retval;
6 };
7
8 SEC("syscall")
9 int attach_prog(struct attach_prog_args *ctx)

10 {
11 ctx->retval = hid_bpf_attach_prog(ctx->hid,
12 ctx->prog_fd,
13 ctx->flags);
14 return 0;
15 }

1 sudo ./hid_mouse /sys/bus/hid/devices/0018:06CB:CD7A.000A

HID-BPF: Load more than 1 program for
device_event

Ordering of execution is implementation detail right now.

25 / 41

` `
1 SEC("fmod_ret/hid_bpf_device_event")
2 int BPF_PROG(invert_x, struct hid_bpf_ctx *hid_ctx)
3 {
4 __s16 *x = (__s16*)hid_bpf_get_data(hid_ctx, 1 /* offset */, 2 /* size */);
5 /* invert X coordinate */
6 *x *= -1;
7 return 0;
8 }
9

10 SEC("fmod_ret/hid_bpf_device_event")
11 int BPF_PROG(invert_y, struct hid_bpf_ctx *hid_ctx)
12 {
13 __s16 *y = (__s16*)hid_bpf_get_data(hid_ctx, 3 /* offset */, 2 /* size */);
14 /* invert Y coordinate */
15 *y *= -1;
16 return 0;
17 }

HID-BPF: device_event

Filter out unwanted �elds in a stream

neutral zone of a joystick

spurious button clicks on old mice

Fix the report when something should not happen

change the device language (in conjunction with rdesc_fixup)

26 / 41

` `
Bene�ts/Use cases:

` `

HID-BPF: changing how the device looks and
talks

data now contains the report descriptor of the device.

(Un)attaching this program triggers a disconnect/reconnect of the device.

Only 1 program of this type per HID device.

27 / 41

1 SEC("fmod_ret/hid_bpf_rdesc_fixup")
2 int BPF_PROG(rdesc_fixup, struct hid_bpf_ctx *hid_ctx)
3 {
4 __u8 *data = hid_bpf_get_data(hid_ctx, 0, 4096 /* size */);
5
6 /* invert X and Y definitions in the event stream interpretation */
7 data[39] = 0x31;
8 data[41] = 0x30;
9

10 return 0;
11 }

` `

HID-BPF: rdesc_fixup

Fix a bogus report descriptor (key not properly mapped)

Morph a device into something else (Surface Dial into a mouse)

Change the device language (in conjunction with device_event)

28 / 41

` `
Bene�ts/Use cases:

` `

HID-BPF: communicate with the device

29 / 41

1 struct hid_send_haptics_args {
2 /* data needs to come at offset 0 so we can use ctx as an argument */
3 __u8 data[10];
4 unsigned int hid;
5 };
6
7 SEC("syscall")
8 int send_haptic(struct hid_send_haptics_args *args)
9 {

10 struct hid_bpf_ctx *ctx;
11 int i, ret = 0;
12
13 ctx = hid_bpf_allocate_context(args->hid);
14 if (!ctx)
15 return -1; /* EPERM check */
16
17 ret = hid_bpf_hw_request(ctx, args->data, 10, HID_FEATURE_REPORT,
18 HID_REQ_GET_REPORT);
19 args->retval = ret;
20
21 hid_bpf_release_context(ctx);
22
23 return 0;
24 }

HID-BPF: communicate with the device

Same behavior than the in-kernel function hid_hw_raw_request() .

Can not be used in interrupt context.

Allows:

query device information

put the device into a speci�c mode

30 / 41

hid_bpf_hw_request()` `

` `

HID-BPF: from a testing user perspective

daemon that waits for udev events

on plug of a device, it loads bBBBBgGGGGvVVVVpPPPPanything.bpf.o

based on the modalias (bus/group/vid/pid)

if there is a probe() syscall in the bpf object:

runs it to check if the program applies to the device

on un-plug: disconnects all known HID-BPF programs attached

Written in rust, so just a cargo build away.

31 / 41

current WIP at https://gitlab.freedesktop.org/bentiss/udev-hid-bpf

` `

` `

` `

https://gitlab.freedesktop.org/bentiss/udev-hid-bpf

HID-BPF: shipping in the kernel

Still to be discussed on how they are shipped/built:

automatically create one module per source �le droppped into the tree (based on the

modalias in the �lename)

ship the sources in the kernel tree, but provide builds in the �rmware tree

one gigantic module that contains all of the eBPF objects to be loaded then unloaded on device

events

something else?

32 / 41

Objective is to have the same sources of BPF programs than the userspace tools.

HID-BPF: how?

33 / 41

Architecture - 1/2

relies on ALLOW_ERROR_INJECTION API to add tracepoints

Introduce a tracepoint in kernel code that can be tweaked by eBPF

Introduced by programmer at a given place in the code

34 / 41

HID-BPF is built on top of BPF, but outside of it:

` `

Architecture - 2/2

relies on the kfunc API for HID-BPF custom BPF API

export a kernel function as eBPF dynamic API

no need to update libbpf

care needs to be taken, but eBPF takes all of the cumbersome part away:

argument checking

availability of the call

versioning

35 / 41

HID-BPF is built on top of BPF, but outside of it:

BPF changes:
custom implementation for attaching to a given HID device

handled through a preloaded eBPF program and custom maps handling

BPF core changes:

Kfuncs for SYSCALL

more control of BPF maps from kernel

better access of ctx in SYSCALL

allow kfuncs to export a read/write or read only array of bytes

36 / 41

` `

` `

Wrap-up

37 / 41

HID-BPF: Summary
should simplify easy �xes in the future

allow to add user-space de�ned behavior depending on the context

can add traces in the events

will allow to live-�x devices without having to update the kernel

no more custom kernel API (sysfs, module parameters)

will not replace in-kernel drivers for devices broken at boot time (keyboards) or for devices that

need an actual driver (hid-rmi.ko)

38 / 41

END

39 / 41

HID-BPF: Summary
should simplify easy �xes in the future

allow to add user-space de�ned behavior depending on the context

can add traces in the events

will allow to live-�x devices without having to update the kernel

no more custom kernel API (sysfs, module parameters)

will not replace in-kernel drivers for devices broken at boot time (keyboards) or for devices that

need an actual driver (hid-rmi.ko)

40 / 41

41 / 41

