
Jesper Dangaard Brouer
Sr. Principal Kernel Engineer

Red Hat Inc.

Linux Plumbers Conference
September 2022

XDP gaining access to NIC
hardware hints via BTF

XDP gaining access to NIC hardware hints via BTF
1

What are XDP-hints
XDP-hints dates back to NetDevConf (by)

Purpose: Let XDP access HW offload hints
Basic idea:

Provide or extract (from descriptor) NIC hardware offload hints
Store info in XDP metadata area (located before pkt header)

XDP metadata area avail since (by Daniel Borkmann)
Space is limited (currently 32 bytes)

Main reason XDP-hints work stalled
No consensus on layout of XDP metadata
BTF was not ready at that time (BPF Type Format)

Nov 2017 PJ Waskiewicz

Sep 2017

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
2

https://www.youtube.com/watch?v=uD1_oAHpUmU
https://legacy.netdevconf.info/2.2/papers/waskiewicz-xdpacceleration-talk.pdf
https://www.spinics.net/lists/netdev/msg456525.html
mailto:hawk@kernel.org

What are traditional hardware offload hints?
NIC hardware provides offload hints in RX (and TX) descriptors

The netstack SKB packet data-struct stores+uses these
RX descriptors can e.g. provide:

RX-checksum validation, RX-hash value, RX-timestamp
RX-VLAN provides VLAN ID/tag non-inline

TX descriptors can e.g. ask hardware to perform actions:
TX-checksum: Ask hardware to compute checksums on transmission
TX-VLAN: Ask hardware to insert VLAN tag
Advanced: TX-timestamp HW stores TX-time and feeds back on completion
Advanced: TX-LaunchTime ask HW to send packet at specific time in future

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
3

mailto:hawk@kernel.org

XDP-hints layout defined via BTF layout
My proposal: Use BTF to define the layout of XDP metadata

Each NIC driver can choose its own BTF layout
Slightly challenging requirement:

NIC driver can change layout per pkt (e.g timestamp only in PTP pkts)
Open question:

Will BTF be a good fit for this use-case?

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
4

mailto:hawk@kernel.org

Next slides: Explaining BTF technical details
Assume LPC crowd knows what BTF is

Slides are here primarily for people downloading these later
Focused on getting mind share on:

What are BTF IDs ?
Especially: BTF object vs. type IDs

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
5

mailto:hawk@kernel.org

Introducing BTF - BPF Type Format
 compact Type Format (based on compiler’s DWARF debug type info)

Great by Andrii Nakryiko
124MB of DWARF data compressed to 1.5MB compact BTF type data

Suitable to be included in Linux kernel image by default
See file /sys/kernel/btf/vmlinux avail in most distro kernels

Kernel’s runtime data structures have become self-describing via BTF

BTF
blogpost

bpftool btf dump file /sys/kernel/btf/vmlinux format c

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
6

https://www.kernel.org/doc/html/latest/bpf/btf.html
https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
mailto:hawk@kernel.org

More components: CO-RE + BTF + libbpf
 on BPF CO-RE (Compile Once – Run Everywhere) (Andrii Nakryiko)

Explains how BTF is one piece of the puzzle
BPF ELF object files are made portable across kernel versions via CO-RE
LLVM compiler emits BTF relocations (for BPF code accessing struct fields)

BPF-prog (binary ELF object) loader libbpf combines pieces
Tailor BPF-prog code to a particular running kernel
Looks at BPF-prog recorded BTF type and relocation information

matches them to BTF information provided by running kernel
updates necessary offsets and other relocatable data

Kernel struct can change layout, iff member name+size stays same

Blogpost

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
7

https://nakryiko.com/posts/bpf-portability-and-co-re/#compiler-support
mailto:hawk@kernel.org

: Partial struct + runtime BTF-id
BPF-prog can define partial struct with few members

libbpf matches + “removes” triple-underscore after real struct name
preserve_access_index will be matched against kernel data-structure

Notice: Can get BTF type id for sk_buff used by running kernel

Code-Example

struct sk_buff___local {
 __u32 hash;
} __attribute__((preserve_access_index));

SEC("kprobe/udp_send_skb.isra.0")
int BPF_KPROBE(udp_send_skb, struct sk_buff___local *skb)
{
 __u32 h; __u32 btf_id;
 BPF_CORE_READ_INTO(&h, skb, hash); /* skb->hash */
 btf_id = bpf_core_type_id_kernel(struct sk_buff___local); /* libbpf load-time lookup */
 bpf_printk("skb->hash=0x%x btf_id(skb)=%d", h, btf_id);
}

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
8

https://github.com/xdp-project/bpf-examples/blob/master/ktrace-CO-RE/ktrace01_kern.c
mailto:hawk@kernel.org

BTF type IDs and their usage
BTF system has type IDs to refer to each-other (in compressed format)

Zero is not a valid BTF ID and numbering (usually) starts from one
Userspace can dump and see numbering via bpftool btf dump file

Kernel’s BTF data files are located in /sys/kernel/btf/ (modules since)

Main file vmlinux contains every type compiled into kernel
All module files offset ID numbering to start at last vmlinux ID

Allows modules to reference vmlinux type IDs (for compression)
Userspace BPF-prog ELF-object files also contains BTF sections

This is known as local BTF and numbering starts at one
BPF-prog can query own local BTF id via: bpf_core_type_id_local()

v5.11

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
9

https://git.kernel.org/torvalds/c/36e68442d1af
mailto:hawk@kernel.org

Q: Can we identify BTF layout via the BTF ID?
Issue: BTF type IDs are not unique (32-bit)

But they are unique within one BTF object
BTF (objects) loaded into kernel also have an (BTF) ID (32-bit)

“vmlinux” gets ID 1
modules gets IDs assigned on loading
same for user loaded BTF objects

Construct unique: Full BTF ID (64-bit)
via combining: BTF object and type ID

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
10

mailto:hawk@kernel.org

Back to XDP-hints
Back to XDP-hints and XDP metadata area

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
11

mailto:hawk@kernel.org

XDP metadata requirements
XDP metadata area has some properties

Grows “backwards” from where packets starts
Must be 4 byte aligned
Limited size (currently) 32 bytes

BPF-prog can expand/grow area via helper: bpf_xdp_adjust_meta

pkt-data pointers are invalidated after calling this
Verifier requires boundary checks to access metadata area

Common gotcha: Compiler likes to pad C-struct ending
Avoid/fix via: __attribute__((packed))

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
12

mailto:hawk@kernel.org

Expected users of the XDP-hints
Users/consumers of XDP-hints in BTF layout

BPF-progs first obvious consumer (either XDP or TC hooks)
XDP to SKB conversion (in veth and cpumap) for traditional HW offloads

e.g. RX-hash, RX-checksum, VLAN, RX-timestamp
Can potentially simplify NIC drivers significantly

Chained BPF-progs can communicate state via metadata
AF_XDP can consume BTF info in userspace to decode metadata area

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
13

mailto:hawk@kernel.org

Motivation for XDP to SKB conversion
Moonshot: NIC drivers without SKB knowledge

End-goal with XDP to SKB conversion
Make it possible to write NIC drivers Ethernet L2 “only”

Goal: Avoids taking the SKB “socket” overhead at driver level
When early netstack layer 2/3 processing xdp_frames

Possible to speedup Linux bridging and routing

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
14

mailto:hawk@kernel.org

Hardware motivation and considerations
Goal: Hardware should produce XDP-hints

Possible for HW as DMA area next to metadata
Consider defining Endianess: Big vs Little endian

In XDP-hints struct layout
Given BTF is flexible, can be added later when HW appears

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
15

mailto:hawk@kernel.org

XDP-hints exploring solutions using BTF
Design not set in stone yet

Upstream interaction will likely change solution anyhow
Explaining current approach

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
16

https://lore.kernel.org/bpf/166256538687.1434226.15760041133601409770.stgit@firesoul/T/#t
mailto:hawk@kernel.org

Step#1: Decouple with btf_id in metadata
Place full “btf_id” value inside metadata area, as last member

last member: due to “grows” backwards, important for AF_XDP decoding
Extend xdp_buff + xdp_frame (+AF_XDP) with flags that BTF is “enabled”

Notice: Full BTF ID identify which module via BTF object ID
This achieves decoupling via btf_full_id - no locked/fixed XDP struct

Pros: Easy to handle different layout per pkt
as BPF-prog (or AF_XDP) can multiplex on btf_id’s known to “them”

Cons: XDP to SKB conversion harder
Would need table lookup for each compat layouts

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
17

mailto:hawk@kernel.org

Step#2: Extend with common struct
Create xdp_hints_common struct with netstack known hints

Still place “btf_full_id” value inside metadata area, as last member
Extend xdp_buff with flag: ’compat with common hints’
Helps XDP to SKB use-case

Userspace MUST not consider this common struct UAPI
Kernel can change this anytime
Userspace MUST use BTF info to decode layout

This is proposal in RFC v2 patchset
[RFCv2] XDP-hints: XDP gaining access to HW offload hints via BTF

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
18

https://lore.kernel.org/bpf/166256538687.1434226.15760041133601409770.stgit@firesoul/T/#t
mailto:hawk@kernel.org

Layout of xdp_hints_common

Member xdp_hints_flags is further ’described’ via

BTF type enum xdp_hints_flags

struct xdp_hints_common {
 union {
 __wsum csum;
 struct {
 __u16 csum_start;
 __u16 csum_offset;
 };
 };
 u16 rx_queue;
 u16 vlan_tci;
 u32 rx_hash32;
 u32 xdp_hints_flags;
 u64 btf_full_id; /* BTF object + type ID */
} __attribute__((aligned(4))) __attribute__((packed));

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
19

mailto:hawk@kernel.org

BTF type enum xdp_hints_flags
Not UAPI: BPF-prog + userspace MUST decode via BTF

enum xdp_hints_flags {
 HINT_FLAG_CSUM_TYPE_BIT0 = 1,
 HINT_FLAG_CSUM_TYPE_BIT1 = 2,
 HINT_FLAG_CSUM_TYPE_MASK = 3,
 HINT_FLAG_CSUM_LEVEL_BIT0 = 4,
 HINT_FLAG_CSUM_LEVEL_BIT1 = 8,
 HINT_FLAG_CSUM_LEVEL_MASK = 12,
 HINT_FLAG_CSUM_LEVEL_SHIFT = 2,
 HINT_FLAG_RX_HASH_TYPE_BIT0 = 16,
 HINT_FLAG_RX_HASH_TYPE_BIT1 = 32,
 HINT_FLAG_RX_HASH_TYPE_MASK = 48,
 HINT_FLAG_RX_HASH_TYPE_SHIFT = 4,
 HINT_FLAG_RX_QUEUE = 128,
 HINT_FLAG_VLAN_PRESENT = 256,
 HINT_FLAG_VLAN_PROTO_ETH_P_8021Q = 512,
 HINT_FLAG_VLAN_PROTO_ETH_P_8021AD = 1024,
};

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
20

mailto:hawk@kernel.org

BTF type enum xdp_hints_csum_type
The HINT_FLAG_CSUM_TYPE’s are mapped to SKB usage

via BTF defined enum - not UAPI
enum xdp_hints_csum_type {
 HINT_CHECKSUM_NONE = CHECKSUM_NONE,
 HINT_CHECKSUM_UNNECESSARY = CHECKSUM_UNNECESSARY,
 HINT_CHECKSUM_COMPLETE = CHECKSUM_COMPLETE,
 HINT_CHECKSUM_PARTIAL = CHECKSUM_PARTIAL,
};

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
21

mailto:hawk@kernel.org

Driver specific struct
Example: Driver specific struct

Simply include common struct as last member

Driver devel must make sure btf_full_id is last member

Watch out for C-compiler padding
And comply with metadata 4 byte alignment rules

struct xdp_hints_i40e {
 struct i40e_rx_ptype_decoded i40e_hash_ptype;
 struct xdp_hints_common common;
};

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
22

mailto:hawk@kernel.org

What BTF layout does a driver provide?
How to solve “exporting” available BTF-layouts

per NIC driver
Is a new really UAPI needed?!?

Just use BTF ???

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
23

mailto:hawk@kernel.org

What BTF layout does this driver provide?
How does userspace (and libbpf) know:

What BTF layout does this driver provide?
Proposal: Struct naming-convention for struct xdp_hints_*

Could be way for drivers to “export” available BTF-layouts?
New UAPI is not really needed:

Remember: BTF info avail via /sys/kernel/btf/
both for vmlinux and modules

libbpf parses and resolves relocations via these
AF_XDP userspace can also decode BTF

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
24

https://github.com/xdp-project/bpf-examples/tree/master/AF_XDP-interaction
mailto:hawk@kernel.org

Proposal: Encapsulating C-code union?
Each NIC driver could have a union named xdp_hints_union

Structs added to union, means driver may use this BTF layout
Notice: Union “sub” structs automatically gets own BTF IDs
Essentially: Way to describe/support NIC using layouts per packet

Complications: metadata grows backwards
Padding needed if union should match memory layout

Cons: Union padding quickly gets “ugly” in C-code
Pros: Easier for driver C-code with one type for metadata area

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
25

mailto:hawk@kernel.org

Example xdp_hints_union for driver i40e

The actual C-code doesn’t look that ugly, right?
and fits a single slide with room to spare

/* xdp_hints_union defines xdp_hints_* structs available in this driver.
 * As metadata grows backwards structure are padded to align.
 */
union xdp_hints_union {
 struct xdp_hints_i40e_timestamp i40e_ts;
 struct {
 u64 pad1_ts;
 struct xdp_hints_i40e i40e;
 };
 struct {
 u64 pad2_ts;
 u32 pad3_i40e;
 struct xdp_hints_common common;
 };
} __aligned(4) __attribute__((packed));

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
26

mailto:hawk@kernel.org

Future work
Mostly covered RX-side:

Future work TX-side: ’ask hardware to perform actions’
Also TX-completion event can return HW hints, e.g. wire TX-time

Help userspace developers decode BTF
Code more and perhaps make lib
Listing of avail xdp_hints_* (via btftool?)

examples

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
27

https://github.com/xdp-project/bpf-examples/tree/master/AF_XDP-interaction
mailto:hawk@kernel.org

End: Questions?
Resources:

XDP-project -
Get an easy start with

XDP-hints mailing list: xdp-hints @ xdp-project.net

GitHub.com/xdp-project
xdp-project/bpf-examples

https://lists.xdp-project.net/

XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer < >hawk@kernel.org
28

https://github.com/xdp-project/
https://github.com/xdp-project/bpf-examples
https://lists.xdp-project.net/
mailto:hawk@kernel.org

