\

/" XDP gaining access to NIC
hardware hints via BTF

Jesper Dangaard Brouer
Sr. Principal Kernel Engineer
Red Hat Inc.

Linux Plumbers Conference
September 2022

Q Red Hat XDP gaining access to NIC hardware hints via BTF

What are XDP-hints

XDP-hints dates back to NetDevConf Nov 201/ (by PJ Waskiewicz)

e Purpose: Let XDP access HW
Basic idea:

offload hints

e Provide or extract (from descriptor) NIC hardware offload hints
e Store info in XDP metadata area (located before pkt header)

XDP metadata area avail since Sep 201/ (by Daniel Borkmann)

e Space is limited (currently 32
Main reason XDP-hints work sta

pytes)
led

o on layout of XDP metadata
e BTF was not ready at that time (BPF Type Format)

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

https://www.youtube.com/watch?v=uD1_oAHpUmU
https://legacy.netdevconf.info/2.2/papers/waskiewicz-xdpacceleration-talk.pdf
https://www.spinics.net/lists/netdev/msg456525.html
mailto:hawk@kernel.org

What are traditional hardware offload hints?
NIC hardware provides offload hints in RX (and TX) descriptors

o packet data-struct stores+uses these
RX descriptors can e.g. provide:

e RX-checksum validation, RX-hash value, RX-timestamp
e RX-VLAN provides VLAN ID/tag non-inline

TX descriptors can e.g. ask hardware to perform actions:

e TX-checksum: Ask hardware to compute checksums on transmission

e TX-VLAN: Ask hardware to insert VLAN tag

e Advanced: TX-timestamp HW stores TX-time and feeds back on completion
e Advanced: TX-LaunchTime ask HW to send packet at specific time in future

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

XDP-hints layout defined via BTF layout

My proposal: Use BTF to define the layout of XDP metadata

e Each NIC driver can choose its own BTF layout
e Slightly challenging requirement:
= NIC driver can change layout per pkt (e.g timestamp only in PTP pkts)

Open question:
e WIll BTF be a good fit for this use-case?

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

Next slides: Explaining BTF technical details

e Slides are here primarily for people downloading these later
Focused on getting mind share on:

e What are BTF IDs ?
m Especially: BTF object vs. type |Ds

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

mailto:hawk@kernel.org

Introducing BTF - BPF Type Format

BTF compact Type

Format (based on compiler's DWARF debug type info)

e Great blogpost by Andrii Nakryiko
= 124MB of DWARF data compressed to 1.5MB compact BTF type data

e Suitable to beinc
m See file /sys/

uded in Linux kernel image by default
Kernel/btf/vmlinux avail in most distro kernels

e Kernel's runtime data structures have become self-describing via BTF

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

https://www.kernel.org/doc/html/latest/bpf/btf.html
https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
mailto:hawk@kernel.org

More components: CO-RE + BTF + libbpf

Blogpost on BPF CO-RE (Compile Once — Run Everywhere) (Andrii Nakryiko)

e Explains how BTF is one piece of the puzzle
e BPF ELF object files are made portable across kernel versions via CO-RE
e | LVM compiler emits BTF relocations (for BPF code accessing struct fields)

BPF-prog (binary ELF object) loader libbpf combines pieces

e Tailor BPF-prog code to a particular running kernel

e | ooks at BPF-prog recorded BTF type and relocation information
= matches them to BTF information provided by running kernel
m ypdates necessary offsets and other relocatable data

e Kernel struct can ,iff member name+size stays same

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

https://nakryiko.com/posts/bpf-portability-and-co-re/#compiler-support
mailto:hawk@kernel.org

Code-Example: Partial struct + runtime BTF-id

BPF-prog can define partial struct with few members

e |libbpf matches + “removes” triple-underscore after real struct name
e preserve_access_index will be matched against kernel data-structure

struct sk_buff local {
u32 hash;

} _ attribute_ ((preserve_access_index));

SEC("kprobe/udp_send_skb.isra.0")
int BPF_KPROBE(udp_send_skb, struct sk buff local *skb)

{
u32 h; u32 btf _id;
BPF_CORE_READ_INTO(&h, skb, hash); /* skb->hash */
btf_id = bpf_core_type_id_kernel(struct sk _buff local); /* libbpf load-time lookup */
bpf_printk("skb->hash=0x%x btf_id(skb)=%d'", h, btf_id);
k

Notice: Can get BTF type id for sk_buff used by running kernel

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

https://github.com/xdp-project/bpf-examples/blob/master/ktrace-CO-RE/ktrace01_kern.c
mailto:hawk@kernel.org

BTF type IDs and their usage

BTF system has type IDs to refer to each-other (in compressed format)

e Zerois not avalid BTF ID and numbering (usually) starts from one
m Userspace can dump and see numbering via bpftool btf dump file

Kernel's BTF data files are located in /sys/kernel/btf/ (modules since v5.11)

e Main file vmlinux contains every type compiled into kernel
e All module files offset ID numbering to start at last vmlinux ID
m Allows modules to reference vmlinux type IDs (for compression)

Userspace BPF-prog ELF-object files also contains BTF sections

e Thisis known as local BTF and numbering starts at one
e BPF-prog can query own local BTF id via: bpf_core_type_id_local()

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

https://git.kernel.org/torvalds/c/36e68442d1af
mailto:hawk@kernel.org

Q: Can we identify BTF layout via the BTF ID?

Issue: BTF type IDs are (32-bit)
e But they are unique within one BTF object

BTF (objects) loaded into kernel also have an (BTF) ID (32-bit)

e “vmlinux” getsID 1

e modules gets IDs assigned on loading
e same for user loaded BTF objects

Construct unique: Full BTF ID (64-bit)
e via combining: BTF object and type ID

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

10

mailto:hawk@kernel.org

Back to XDP-hints

Back to XDP-hints and XDP metadata area

Red Hat

XDP gaining access to NIC hardware hints via BTF -

Jesper Dangaard Brouer <hawk@kernel.org>

1

mailto:hawk@kernel.org

XDP metadata requirements

XDP metadata area has some properties

e Grows “backwards” from where packets starts
e Must be 4 byte aligned
e Limited size (currently) 32 bytes

BPF-prog can expand/grow area via helper: bpf_xdp_adjust_meta

e pkt-data pointers are invalidated after calling this
e Verifier requires boundary checks to access metadata area

Common gotcha: Compiler likes to pad C-struct ending
e Avoid/fixvia: __attribute__ ((packed))

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

12

mailto:hawk@kernel.org

Expected users of the XDP-hints

Users/consumers of XDP-hints in BTF layout

e BPF-progs first obvious consumer (either XDP or TC hooks)

e XDP to SKB conversion (in veth and cpumap) for traditional HW offloads
m e.g. RX-hash, RX-checksum, VLAN, RX-timestamp
= Can potentially simplify NIC drivers significantly

e Chained BPF-progs can communicate state via metadata

o AF_XDP can consume BTF info in userspace to decode metadata area

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

13

mailto:hawk@kernel.org

Motivation for XDP to SKB conversion

Moonshot: NIC drivers without SKB knowledge

e End-goal with XDP to SKB conversion
e Make it possible to write NIC drivers Ethernet L2 “only”

Goal: Avoids taking the SKB “socket” overhead at driver level

e When early netstack layer 2/3 processing xdp_frames
m Possible to speedup Linux bridging and routing

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

14

mailto:hawk@kernel.org

Hardware motivation and considerations
Goal: Hardware should produce XDP-hints

e Possible for HW as DMA area next to metadata
Consider defining Endianess: Big vs Little endian

e |n XDP-hints struct layout
e Given BTF is flexible, can be added later when HW appears

RedHat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

15

mailto:hawk@kernel.org

XDP-hints exploring solutions using BTF

Design not set In stone yet
e Upstream interaction will likely change solution anyhow

Explaining current

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

16

https://lore.kernel.org/bpf/166256538687.1434226.15760041133601409770.stgit@firesoul/T/#t
mailto:hawk@kernel.org

Step#1: Decouple with btf_id in metadata

Place full "btf_id" value inside metadata area, as last member

e |ast member: due to “grows” backwards, important for AF_XDP decoding
e Extend xdp_buff + xdp_frame (+AF_XDP) with flags that BTF is “enabled”

m . Full BTF ID identify which module via BTF object ID
This achieves decoupling via btf_full_id - no locked/fixed XDP struct

e Pros: Easy to handle different layout per pkt

= as BPF-prog (or AF_XDP) can multiplex on btf_id's known to “them”
. : XDP to SKB conversion

= Would need table lookup for each compat layouts

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

17

mailto:hawk@kernel.org

Step#2: Extend with common struct

Create xdp_hints_common struct with netstack known hints

o Still place “btf_full_id” value inside metadata area, as last member
e Extend xdp_buff with flag: ‘compat with common hints’
e Helps XDP to SKB use-case

Userspace MUST not consider this common struct

e Kernel can change this anytime
e Userspace use BTF info to decode layout

This is proposal in RFC v2 patchset
e [RFCv2] XDP-hints: XDP gaining access to HW offload hints via BTF

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

18

https://lore.kernel.org/bpf/166256538687.1434226.15760041133601409770.stgit@firesoul/T/#t
mailto:hawk@kernel.org

Layout of xdp_hints_common

struct xdp_hints common {

union {
wsum csum;
struct {
__ule6 csum_start,
__ule csum_offset;
Iy
Ji
ulé rx_queue,
ulé vlan_tci;
u32 rx_hash32;
u32 xdp_hints_flags;

64 btf full id;
} _ attribute_ ((aligned(4))) _ attribute__ ((packed));

c
S

Member xdp_hints_flags is further described’ via
e BTF type enum xdp_hints_flags

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

19

mailto:hawk@kernel.org

BTF type enum xdp_hints_flags

: BPF-prog + userspace MUST decode via BTF

enum xdp_hints flags {

I

HINT _FLAG_CSUM_TYPE_BITO = 1,
HINT _FLAG_CSUM_TYPE BIT1 = 2
HINT_FLAG_CSUM_TYPE _MASK = 3

~

4
HINT_FLAG_CSUM_LEVEL BITO = 4,
HINT _FLAG_CSUM_LEVEL BIT1 = 8,
HINT_FLAG_CSUM_LEVEL MASK = 12,
HINT_FLAG_CSUM_LEVEL_SHIFT = 2

4
HINT_FLAG_RX HASH _TYPE _BITO = 16,
HINT _FLAG_RX HASH TYPE _BIT1 = 32,
HINT_FLAG_RX HASH TYPE_MASK = 48,
HINT_FLAG_RX HASH_TYPE_SHIFT = 4,
HINT_FLAG_RX QUEUE = 128,
HINT_FLAG_VLAN_PRESENT = 256,

HINT FLAG_VLAN_PROTO ETH _P_8021Q = 512,
1024,

HINT_FLAG_VLAN_PROTO_ETH P_8021AD

Red Hat

XDP gaining access to NIC hardware hints via BTF

Jesper Dangaard Brouer <hawk@kernel.org>

20

mailto:hawk@kernel.org

BTF type enum xdp_hints_csum_type

The HINT_FLAG_CSUM_TYPE's are mapped to SKB usage
e via BTF defined enum - not UAPI

enum xdp_hints_csum_type {
HINT_CHECKSUM_NONE
HINT_ _CHECKSUM_UNNECESSARY
HINT_CHECKSUM_COMPLETE
HINT_ _CHECKSUM_PARTIAL

CHECKSUM_NONE,
CHECKSUM_UNNECESSARY,
CHECKSUM_COMPLETE,
CHECKSUM_PARTIAL,

I

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

21

mailto:hawk@kernel.org

Driver specific struct

Example: Driver specific struct

e Simply include common struct as last member

struct xdp_hints i40e {
struct 140e_rx _ptype_decoded 140e hash_ptype;
struct xdp_hints common common;

I i
Driver devel must make sure btf full idislast member

e Watch out for C-compiler padding
e And comply with metadata 4 byte alignment rules

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

22

mailto:hawk@kernel.org

What BTF layout does a driver provide?

How to solve “exporting” available BTF-layouts
e per NIC driver

Is a new really UAPI needed?!?

e Justuse BTF 777

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

23

mailto:hawk@kernel.org

What BTF layout does this driver provide?

How does userspace (and libbpf) know:
e What BTF layout does this driver provide?
: Struct naming-convention for struct xdp_hints_*

e Could be way for drivers to “export” available BTF-layouts?
New UAPI is not really needed:
e Remember: BTF info avail via /sys/kernel/btf/

m both for vmlinux and modules

e |ibbpf parses and resolves relocations via these
e AF_XDP userspace can also decode BTF

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

24

https://github.com/xdp-project/bpf-examples/tree/master/AF_XDP-interaction
mailto:hawk@kernel.org

Proposal: Encapsulating C-code union?

Each NIC driver could have a union named xdp_hints_union

e Structs added to union, means driver may use this BTF layout
e Notice: Union “sub” structs automatically gets own BTF IDs
e Essentially: Way to describe/support NIC using layouts per packet

Complications: metadata grows backwards

e Padding needed if union should match memory layout
= Cons: Union padding quickly gets “ugly” in C-code
m Pros: Easier for driver C-code with one type for metadata area

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

25

mailto:hawk@kernel.org

Example xdp_hints_union for driver i40e

union xdp_hints union {
struct xdp_hints_ i40e_timestamp 1i40e ts;
struct {
u64 padi_ts;
struct xdp_hints_1i40e 1i40e;

i
struct {

u64 pad2 ts;

u32 pad3 i40e;

struct xdp_hints common common;
i

} __aligned(4) _ attribute__ ((packed));

The actual C-code doesn't look that ugly, right?

e and fits a single slide with room to spare

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

26

mailto:hawk@kernel.org

Future work
Mostly covered RX-side:

e Future work TX-side: 'ask hardware to perform actions’
e Also TX-completion event can return HW hints, e.g. wire TX-time

Help userspace developers decode BTF

e Code more examples and perhaps make lib
e Listing of avail xdp_hints_* (via btftool?)

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

27

https://github.com/xdp-project/bpf-examples/tree/master/AF_XDP-interaction
mailto:hawk@kernel.org

End: Questions?

Resources:

e XDP-project - GitHub.com/xdp-project
m Get an easy start with xdp-project/bpf-examples
e XDP-hints mailing list: xdp-hints @ xdp-project.net
m https://lists.xdp-project.net/

Red Hat XDP gaining access to NIC hardware hints via BTF - Jesper Dangaard Brouer <hawk@kernel.org>

28

https://github.com/xdp-project/
https://github.com/xdp-project/bpf-examples
https://lists.xdp-project.net/
mailto:hawk@kernel.org

