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Agenda

● Infrastructure-wide profilers
● Low level ecosystem
● Stack unwinding/walking in the Linux kernel
● Building profilers using BPF
● Walking user stacks (without frame pointers)
● Future work and questions



Profilers for the cloud native environment

● Developer machines != production systems
● Infrastructure-wide profilers
● Types of profilers

○ Tracing and sampling

● Raw data for sampling profilers
○ Different formats (pprof, folded etc)
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Low level ecosystem



ELF and DWARF

● Executable Linkable format - ELF
○ For obj file, executable program, shared object etc

● DWARF - widely used debugging format
○ CIE - Common Information Entry

● Tools to read ELF and/or DWARF information
○ readelf, objdump, elfutils, llvm-dwarfdump
○ gcc also has -g option



Stacktraces and x86_64 ABI

● What collecting stack traces involve
○ Kernel stacks
○ Application stacks

● Direction of stack growth
● So what are stack pointers, where do 

they come from

From: x86_64 ABI specification



$rbp, $rsp & $rip registers

● $rbp: address of the base of the previous 

stack frame

● $rsp: Top of the stack, local variables

○ Generally previous value of rsp is where FP is 

stored

● $rip: Holds the pc for the currently 

executing function



Frame pointers are often disabled

● Increased binary size → less i-cache hits

● 1 less register available



Cons of disabling frame pointers

● Walking stack traces becomes more expensive

● Less accuracy

● Way more work for compiler / debugger / profiler developers

● This information is large



The reality

● Great if you are hyperscaler 



The harsh reality

● Great if you are hyperscaler 
● But, for the rest of us…



Frame pointer believers

● Golang >=1.7
● MacOS 
● The Linux kernel (*):

○  CONFIG_UNWINDER_FRAME_POINTER and CONFIG_UNWINDER_ORC



No frame pointers?



Stack unwinding in the Linux kernel w/o fp

● ORC (CONFIG_UNWINDER_ORC x86_64 only)

● Doesn’t rely on .debug_frame/.eh_frame

● Enabled by some of the major cloud vendors



Unwinding the stack without frame pointers

● DWARF unwind information
○ .eh_frame
○ .debug_frame 

● Synthesizing them from object code
● Guessing which stack values are return addresses



.eh_frame – unwind tables

$ readelf -wF ./test_binary

   LOC           CFA      rbp   ra    

00000000004011f0 rsp+8    u     c-8   

00000000004011f1 rsp+16   c-16  c-8   

00000000004011f4 rbp+16   c-16  c-8   

0000000000401242 rsp+8    c-16  c-8 



.eh_frame – generating unwind tables

$ readelf --debug-dump=frames ./test_binary

DW_CFA_advance_loc: 1 to 00000000004011f1

DW_CFA_def_cfa_offset: 16

DW_CFA_offset: r6 (rbp) at cfa-16

DW_CFA_advance_loc: 3 to 00000000004011f4

DW_CFA_def_cfa_register: r6 (rbp)

DW_CFA_advance_loc1: 78 to 0000000000401242

DW_CFA_def_cfa: r7 (rsp) ofs 8

DW_CFA_nop



Stack unwinding with eBPF



With frame pointers

stack_id = bpf_get_stackid(ctx, &user_stacks, BPF_F_USER_STACK);



With frame pointers

stack_id = bpf_get_stackid(ctx, &user_stacks, 
BPF_F_USER_STACK);

add_stack(stack_id);

// add_stack bumps map<stack_id, count_t>

// user_stacks = map<stack_id, array<addresses>>



Without frame pointers

● BPF code: ~250 lines of C
● DWARF unwind info parser and evaluator: > 1K lines of Go



Unwinding w/o frame pointers – architecture

Unwind tables generation
BPF map<pid, unwind_table>

BPF program

Kernel

Userspace

BPF management
- Creating maps
- Loading program
- Writing in maps
- Reading output
- etc.



Unwinding w/o frame pointers – unwind table

struct unwind_row {

u64 program_counter;

type_t previous_rsp; 

type_t previous_rbp; 

}



Unwinding w/o frame pointers – unwind table gen

● .eh_frame / .debug_frame
○ Parse
○ Evaluate



Unwinding w/o frame pointers – BPF (1)

● Find the unwind table for the current process
● While main isn't reached:

○ Append the program counter ($rip) to the walked stack
○ Find the unwind row for the current program counter 
○ Restore registers for the previous frame

■ Return address $rip
■ Stack pointer $rsp
■ And $rbp, too



Unwinding w/o frame pointers – BPF (2)

● Efficiently finding the unwind data for a program counter
● Fun to implement in BPF :)



Unwinding w/o frame pointers – BPF (3)



Unwinding w/o frame pointers – Future work

● Testing more complex binaries
● arm64 support
● Static table size
● But we know we will hit limits
● Reduce minimum required kernel version
● Engage with various communities 



Thank you!


