
Developing eBPF profilers
for polyglot cloud-native
applications

Vaishali Thakkar (@vthakkar_)
Javier Honduvilla Coto <javier@polarsignals.com>

Agenda

● Infrastructure-wide profilers
● Low level ecosystem
● Stack unwinding/walking in the Linux kernel
● Building profilers using BPF
● Walking user stacks (without frame pointers)
● Future work and questions

Profilers for the cloud native environment

● Developer machines != production systems
● Infrastructure-wide profilers
● Types of profilers

○ Tracing and sampling

● Raw data for sampling profilers
○ Different formats (pprof, folded etc)

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Mechanism to
collect stack

traces (kernel,
userspace)

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Mechanism to
collect stack

traces (kernel,
userspace)

Profile formats

Profilers for the cloud native environment

Discovery
mechanism for

the targets

Mechanism to
collect stack

traces (kernel,
userspace)

Async
symbolization &

visualization
Profile formats

Low level ecosystem

ELF and DWARF

● Executable Linkable format - ELF
○ For obj file, executable program, shared object etc

● DWARF - widely used debugging format
○ CIE - Common Information Entry

● Tools to read ELF and/or DWARF information
○ readelf, objdump, elfutils, llvm-dwarfdump
○ gcc also has -g option

Stacktraces and x86_64 ABI

● What collecting stack traces involve
○ Kernel stacks
○ Application stacks

● Direction of stack growth
● So what are stack pointers, where do

they come from

From: x86_64 ABI specification

$rbp, $rsp & $rip registers

● $rbp: address of the base of the previous

stack frame

● $rsp: Top of the stack, local variables

○ Generally previous value of rsp is where FP is

stored

● $rip: Holds the pc for the currently

executing function

Frame pointers are often disabled

● Increased binary size → less i-cache hits

● 1 less register available

Cons of disabling frame pointers

● Walking stack traces becomes more expensive

● Less accuracy

● Way more work for compiler / debugger / profiler developers

● This information is large

The reality

● Great if you are hyperscaler

The harsh reality

● Great if you are hyperscaler
● But, for the rest of us…

Frame pointer believers

● Golang >=1.7
● MacOS
● The Linux kernel (*):

○ CONFIG_UNWINDER_FRAME_POINTER and CONFIG_UNWINDER_ORC

No frame pointers?

Stack unwinding in the Linux kernel w/o fp

● ORC (CONFIG_UNWINDER_ORC x86_64 only)

● Doesn’t rely on .debug_frame/.eh_frame

● Enabled by some of the major cloud vendors

Unwinding the stack without frame pointers

● DWARF unwind information
○ .eh_frame
○ .debug_frame

● Synthesizing them from object code
● Guessing which stack values are return addresses

.eh_frame – unwind tables

$ readelf -wF ./test_binary

 LOC CFA rbp ra

00000000004011f0 rsp+8 u c-8

00000000004011f1 rsp+16 c-16 c-8

00000000004011f4 rbp+16 c-16 c-8

0000000000401242 rsp+8 c-16 c-8

.eh_frame – generating unwind tables

$ readelf --debug-dump=frames ./test_binary

DW_CFA_advance_loc: 1 to 00000000004011f1

DW_CFA_def_cfa_offset: 16

DW_CFA_offset: r6 (rbp) at cfa-16

DW_CFA_advance_loc: 3 to 00000000004011f4

DW_CFA_def_cfa_register: r6 (rbp)

DW_CFA_advance_loc1: 78 to 0000000000401242

DW_CFA_def_cfa: r7 (rsp) ofs 8

DW_CFA_nop

Stack unwinding with eBPF

With frame pointers

stack_id = bpf_get_stackid(ctx, &user_stacks, BPF_F_USER_STACK);

With frame pointers

stack_id = bpf_get_stackid(ctx, &user_stacks,
BPF_F_USER_STACK);

add_stack(stack_id);

// add_stack bumps map<stack_id, count_t>

// user_stacks = map<stack_id, array<addresses>>

Without frame pointers

● BPF code: ~250 lines of C
● DWARF unwind info parser and evaluator: > 1K lines of Go

Unwinding w/o frame pointers – architecture

Unwind tables generation
BPF map<pid, unwind_table>

BPF program

Kernel

Userspace

BPF management
- Creating maps
- Loading program
- Writing in maps
- Reading output
- etc.

Unwinding w/o frame pointers – unwind table

struct unwind_row {

u64 program_counter;

type_t previous_rsp;

type_t previous_rbp;

}

Unwinding w/o frame pointers – unwind table gen

● .eh_frame / .debug_frame
○ Parse
○ Evaluate

Unwinding w/o frame pointers – BPF (1)

● Find the unwind table for the current process
● While main isn't reached:

○ Append the program counter ($rip) to the walked stack
○ Find the unwind row for the current program counter
○ Restore registers for the previous frame

■ Return address $rip
■ Stack pointer $rsp
■ And $rbp, too

Unwinding w/o frame pointers – BPF (2)

● Efficiently finding the unwind data for a program counter
● Fun to implement in BPF :)

Unwinding w/o frame pointers – BPF (3)

Unwinding w/o frame pointers – Future work

● Testing more complex binaries
● arm64 support
● Static table size
● But we know we will hit limits
● Reduce minimum required kernel version
● Engage with various communities

Thank you!

