
Socket termination with
intent
Aditi Ghag

Software Engineer, Isovalent

Agenda

● Introduction to Cilium

● Motivation and use cases

● Evaluated approaches

● Notes from mailing list

● Next steps

Cilium high-level overview
Control plane:

- Receives events for
cluster entities

- Shares state with
datapath via BPF
maps

Dataplane:

- BPF programs
executed on cgroup,
tc, xdp hooks

- Load-balancing, policy
enforcement,
encapsulation, …

Pod

Control plane

BPF
maps

Cilium
agent

Client
app

Kubernetes API
server

BPF cgroup,
TC, XDP
programs

Dataplane

eth0

Use case #1: Socket load balancing in Cilium

eth0

client

eth0

lxc0

Node 1

eth0

eth0

server

lxc0

Node 2

● BPF_PROG_TYPE_CGROUP_SOCK_ADDR

● TCP, connected UDP: Service translation in connect() and recvmsg() events

● UDP: Service translation in sendmsg() and recvmsg()

connect():
service vip -> backend ip

recvmsg():
backend ip -> service vip

BPF
sock
hooks

BPF
maps

What happens when remote backends go away?

● Service backend selection happens once at connect()

● TCP clients may get FIN/RST

● Connected UDP clients are unaware of disappeared remote backends

● Extended connectivity disruption for long-lived idle connections

Intent #1: Terminate client sockets connected to stale backends so that they
can reconnect to active ones

Use case #2: Policy enforcement

● On-the-fly policies

● Example: Cilium supports BPF based node-local redirection for use cases like
node-local DNS [1]. Consistent enforcement even for proxies with existing
long-lived connections.

[1] https://kubernetes.io/docs/tasks/administer-cluster/nodelocaldns/

Intent #2: Terminate client socket connections prevented by applied
policies

Socket termination with intent:

● How to filter sockets to terminate?

● How to forcefully terminate filtered sockets?

Step 1: Filtering sockets to terminate

Identify sockets to terminate

Backend deleted

Policy applied

SOCK_DIAG infrastructure

● Netlink based system to query sockets data

● Query supports filtering based on socket states

● Code highlights
struct nlmsghdr

nlh->nlmsg_type = SOCK_DIAG_BY_FAMILY

struct inet_diag_req_v2

diag_req->idiag_ext = INET_DIAG_INFO

https://elixir.bootlin.com/linux/latest/C/ident/inet_diag_req_v2

SOCK_DIAG infrastructure

● Netlink based system to query sockets data

● Query supports filtering based on socket states

● Code highlights
struct nlmsghdr

nlh->nlmsg_type = SOCK_DIAG_BY_FAMILY

struct inet_diag_req_v2

diag_req->idiag_ext = INET_DIAG_INFO

- Limited filtering capability
- Requires entering all network namespaces

https://elixir.bootlin.com/linux/latest/C/ident/inet_diag_req_v2

BPF (sockets) iterator

● Iterator makes kernel data available to BPF programs

● Facilitates flexible filtering of sockets

● Most up-to-date view of sockets for further processing

BPF (sockets) iterator

● Iterator makes kernel data available to BPF programs

● Facilitates flexible filtering of sockets

● Most up-to-date view of sockets for further processing

- Network namespace aware

Step 2: Terminating filtered sockets

Unreachable routes

● Add unreachable routes for deleted backends

ip route add unreachable 192.168.60.11/32

Unreachable routes

● Add unreachable routes for deleted backends

ip route add unreachable 192.168.60.11/32

- Effective only for new connections: not too useful as Cilium supports graceful
termination

- ICMP errors are ignored in established state (TCP and connected UDP)

sock_destroy

● Invokes handlers to abort sockets (protocols: TCP, UDP, raw sockets)

● Sets socket error to ECONNABORTED

● Disconnect/Send RST

● Currently exposed via Netlink:

struct nlmsghdr

nlmsg_type = SOCK_DESTROY

populate socket fields retrieved from SOCK_DIAG

sock_destroy

● Invokes handlers to abort sockets (protocols: TCP, UDP, raw sockets)

● Sets socket error to ECONNABORTED

● Disconnect/Send RST
● Currently exposed via Netlink:

struct nlmsghdr

nlmsg_type = SOCK_DESTROY

populate socket fields retrieved from SOCK_DIAG

- Disabled by default behind CONFIG_INET_DIAG_DESTROY

- Network namespace checks

- No BPF helper

Notes from mailing list

- Sent RFC with use cases and evaluated approaches on the mailing list

- People see value in having a global BPF (socket) iterator

- Suggestions for an “all-netns” socket iterator target for TCP and UDP

- sock_destroy, or connecting to other backends in some cases

Thanks Martin and others for the discussions!

Next steps

- RFC patches for adding a BPF helper to abort sockets tested using selftests

New self test mirrors intended usage of API

BPF_CALL_2(bpf_sock_destroy, struct sock *, sk, int, err)

{

 bool lock = false;

 sk = sk_to_full_sk(sk);

 if (!sk || !sk_fullsock(sk))

 return 0s;

 if (!sk->sk_prot->diag_destroy)

 return -EOPNOTSUPP;

 return sk->sk_prot->diag_destroy(sk, err, lock);

}

Putting it all together

- Iterate over sockets upon LB events using BPF iterator

- Filter sockets based on the destination address or socket metadata

- Invoke BPF helper for sock_destroy

Putting it all together

- Iterate over sockets upon LB events using BPF iterator

- Filter sockets based on the destination address or socket metadata

- Invoke BPF helper for sock_destroy

Optimization: Can we get away from iterating over all sockets?

- Cilium BPF programs record client sockets to backend mappings

- BPF_MAP_TYPE_SOCKHASH to store client sockets

Summary

- Load balancing and policy enforcement may need forceful socket termination

- BPF iterator to filter sockets

- BPF helper for sock_destroy internal API to terminate sockets

Open questions/discussions

- Connecting to other UDP backends for some use cases instead of abort?

- Per netns socket hash tables

Thank you!
Questions?

