
BPF Signing + IMA

What do we want?

"This BPF program comes from a trusted source"

Requirements

Flexibility

Stable BPF instruction buffer

What?

A policy framework that allows users (e.g. distributions) to guarantee the integrity
of the system

Why?

Ensure the instructions / code executed on the system come from a trusted source

About IMA

How is the policy for signature verification specified?

How is the policy verified?

Key discussion points

Policy specification: Should it be just IMA?

IMA should not be the only way the policy is specified

Not a flexible solution

No, some distros are already used to IMA and want to
use it for BPF too.

Policy specification: Only custom policy formats?

Proposal #1

Support IMA policy format and also provide support for
custom policy formats.

Not everyone enables IMA, not a flexible approach

Verification Logic: Only in IMA?

● BPF exports helpers for IMA functionality

IMA may not be willing to expose a lot of internals to eBPF

● Distro implements (or uses) an eBPF program that
understands the IMA policy

Maintainership of the IMA signature verifier eBPF program

Verification Logic: Only in BPF?

Both IMA and BPF programs should be able to
implement the signature verification

Proposal #2

All verification happens in the implementation of
security_bpf_prog_alloc.

The LSM framework allows for co-existence.

Proposal #3

How do we make it flexible?

The signature is stored in a buffer passed along with
BPF syscall

Anonymous blob or buffer, IMA can choose what to
write.

union bpf_attr {

[...]

struct { /* anonymous struct used by BPF_PROG_LOAD command */

__u32 prog_type; /* one of enum bpf_prog_type */

__u32 insn_cnt;

__aligned_u64 insns;

[...]

 __aligned_u64 core_relos;

 __u32 core_relo_rec_size;

+ __aligned_u64 signature;

+ __u32 signature_size;

 };

Data that is signed

Signature

IMA, an LSM?

int security_bpf_prog_alloc(struct bpf_prog_aux *aux)

{

 int ret;

 ret = call_int_hook(bpf_prog_alloc_security, 0, aux);

 if (ret)

 return ret;

 return ima_bpf_prog_alloc(aux);

}

Some historical context..does it really matter?

Doesn't override
LSMs

Light skeletons

A stable instruction buffer is required for signature verification

Use light skeletons

Light skeletons are limited to only a subset of programs

int bpf_data_sign(

const char *private_key_path,

const char *x509_cert_path,

const void *data, size_t data,

void *sig_buf,

size_t max_sig_len)

Can be extended to other formats e.g. IMA

Basic bpftool support

bpftool prog load -L -S signing_key.pem signing_key.x509 prog.o

bpftool gen skeleton -L -S signing_key.pem signing_key.x509 prog.o

Signing: PKCS#7

Thank you!

