
Cilium's BPF kernel datapath revamped

Daniel Borkmann & Nikolay Aleksandrov, Isovalent

Agenda: Ongoing development items

➔ Part 1: Interference at prio 1 handle 1 ...

➔ Part 2: tc object model vs BPF links

➔ Part 3: Revamped design for tc BPF datapath

➔ Part 4: Integration of BPF links for tc

Part 1: Interference at prio 1 handle 1 ...

3

4

Host / initial netns
Pod / own netns

veth veth

Cilium’s BPF datapath overview

veth

(optional)

vxlan,
geneve

5

Host / initial netns
Pod / own netns

veth veth

Cilium’s BPF datapath overview

veth

(optional)

vxlan,
geneve

tc BPF

tc BPF

tc BPF

tc BPF

XDP BPF

sock_addr/sk BPF

6

Host / initial netns
Pod / own netns

veth veth

Cilium’s BPF datapath overview

veth

(optional)

vxlan,
geneve

tc BPF

tc BPF

tc BPF

tc BPF

XDP BPF

sock_addr/sk BPF

Generally:

- Cilium assumes network ownership from a K8s CNI PoV
- Various CNI chaining options exist and work

- Usually only around IPAM and netdev setup
delegation, but not around BPF

- Example: AWS VPC CNI plugin

For tc BPF:

- Cilium sets up netdevs, moves them into target netns,
installs Pod addresses/routes

- Installs single cls_bpf in ‘da’ mode with: prio 1, handle 1
- Option for advanced users to customize prio

- All bets are off in this case and up to user
- Example: if prog at prio 1 returns TC_ACT_OK

then Cilium is bypassed
- Should be well-understood in general

7

Tale from user staging env ...

8

Tale from user staging env ...

9

Tale from user staging env ...

... and debugging continued!

➔ No failures in Cilium agent log, looked all reasonably normal
➔ User ‘sysdump’ with all configs and Cilium state looked fine
➔ No reports of packet drops, no issues from a policy angle
➔ Routes looked good, nothing suspicious from netfilter

10

Tale from user staging env ...

... until we noticed:

11

Tale from user staging env ...

... until we noticed:

lxc devices
are created
by Cilium,
one for
each Pod.

12

Tale from user staging env ...

... until we noticed:

We do attach to
clsact + {ingress,
egress} hooks.

13

Tale from user staging env ...

... until we noticed:

bpf_lxc programs are
installed by Cilium
w/ ‘from-container’
or ‘to-container’

14

Tale from user staging env ...

... until we noticed:

But these are not!

15

Tale from user staging env ...

... until we noticed:

But these are not!

16

Tale from user staging env ...

... until we noticed:

But these are not!
Bingo!

17

Tale from user staging env ...

... tl;dr:

➔ 3rd party agent was replacing all cls_bpf instances and removing programs underneath us
➔ Periodically attaching to all devices with same prio 1, handle 1 which we use
➔ Cilium agent couldn’t see issue and assumed all is fine
➔ Removing 3rd party DaemonSet and restarting Cilium one, everything worked again

18

Tale from user staging env ...

... how can we solve the ownership problem? Enter BPF links!

19

BPF links as ‘container’ object for BPF progs

BPF links:

➔ Represents attachment of BPF prog to BPF hook point
◆ Abstraction ‘containing’ BPF program
◆ Holds (single) reference to keep BPF program alive
◆ Hook points do not reference BPF link, only

application fd or pinning does
◆ Holds meta-data specific to attachment
◆ Create/Update/Detach/Get{Next,FdById}
◆ Application deals with link fd instead of program fd,

meaning, program fd is safe to close after link is created

App BPF prog
fd

App

BPF link
fd

BPF prog

20

BPF links as ‘container’ object for BPF progs

BPF links:

➔ Represents attachment of BPF prog to BPF hook point
◆ Abstraction ‘containing’ BPF program
◆ Holds (single) reference to keep BPF program alive
◆ Hook points do not reference BPF link, only

application fd or pinning does
◆ Holds meta-data specific to attachment
◆ Create/Update/Detach/Get{Next,FdById}
◆ Application deals with link fd instead of program fd,

meaning, program fd is safe to close after link is created
➔ Explicitly allows to prevent prog detachment on process exit when link pinned

(e.g. think of tracing app, can be upgraded on the fly while prog continues to run)

App BPF prog
fd

App

BPF link
fd

BPF prog

21

BPF links as ‘container’ object for BPF progs

BPF links:

➔ Co-exists with non-link attachments for {single,multi}-attach supported hooks
➔ Key properties regarding attachment

◆ BPF links cannot replace other BPF links
◆ BPF links cannot replace non-BPF links
◆ non-BPF links cannot replace BPF links
◆ (non-BPF links can replace non-BPF links)

22

BPF links as ‘container’ object for BPF progs

BPF links:

➔ 9 link types exist today, mostly relevant to tracing and partially networking
◆ raw tracepoint, tracing, perf_event, kprobe_multi
◆ XDP, netns, cgroup, struct_ops, iter

➔ BUT: no tc BPF link today!

Part 2: tc object model vs BPF links

23

tc objects relevant for BPF attachment:

24

tc recap in a nutshell

tc {ingress,egress}

sch_clsact (‘fake’ qdisc)

cls_bpf (da)

cls_bpf

cls_abc

bpf prog
cls_bpf
bpf prog

bpf prog

act_xyz

cls_bpf (da)

da: ‘direct action’, meaning BPF program
returns a verdict from below instead of calling
act_xyz. Crucial (!) otherwise tools like Cilium
wouldn’t exist today as legacy tc doesn’t scale.

TC_ACT_UNSPEC:
- Continue in pipeline

TC_ACT_OK:
- Terminate and pass to stack↑/driver↓

TC_ACT_SHOT:
- Terminate and drop

TC_ACT_REDIRECT:
- Terminate and forward to given netdev

TC_ACT_*:
- Rest has not much relevance for BPF,

mostly dups of above or unsupported

(non-BPF example)

(“Qdisc”)

(“Classifier”)

(“Action”)

25

tc recap in a nutshell

tc objects in context of Cilium:

➔ Single entry point with immediate termination
➔ Needed given BPF program implements complex policy/firewalling, load-balancing,

local forwarding to K8s Pods, tunnel/ipsec/wireguard mesh, etc

tc {ingress,egress} sch_clsact (‘fake’ qdisc) cls_bpf (da) bpf prog
TC_ACT_OK
TC_ACT_SHOT
TC_ACT_REDIRECT

26

tc objects and BPF links?

How to marry both layers together ...

➔ Tricky, tc has its own object model and configuration which does not fit well with BPF link
➔ Think of BPF link semantics for tracing

◆ Link keeps the prog alive, so tracing can continue in pinned link when
process exits, and link ownership can be taken again by new process

◆ This kind of exists with cls_bpf except for the ‘ownership’ part

[https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/]

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

27

tc objects and BPF links?

Original thoughts and goals:

➔ Meta: Safe auto-detachment of tc BPF programs

[https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/]

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

28

tc objects and BPF links?

Original thoughts and goals:

[https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/]

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

29

tc objects and BPF links?

Original thoughts and goals:

➔ But flexibility is needed:

[https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/]

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

30

tc objects and BPF links?

Original thoughts and goals:

➔ BPF link would lock cls_bpf program detachment, but semantics from tracing are
not straight forward transferrable given we don’t have fd-based objects

◆ sch_clsact can just wipe the cls_bpf, so the link would have to lock the
former (or even the netdev) which gets into weird layering

◆ Other cls_* objects don’t fit into the big picture but intrusive to tc internals

[https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/]

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

31

tc objects and BPF links?

Original thoughts and goals:

➔ Earlier attempts intrusive/non-fitting to tc core, for example:

[https://lore.kernel.org/bpf/20210604063116.234316-1-memxor@gmail.com/]

https://lore.kernel.org/bpf/20210604063116.234316-1-memxor@gmail.com/

32

tc objects and BPF links?

Additional thoughts and goals:

➔ Cilium: Safe ownership model of tc BPF programs
➔ While cooperation between components can be possible (TC_ACT_UNSPEC),

it is also clear that it cannot be realized implicitly
◆ Most cloud native components shipped via containers, developed

by disjoint set of teams/companies/etc
◆ Verdict conflicts possible, so pipeline model here to stay with explicit

cooperation between BPF programs when feasible
◆ However: can't make two programs work correctly together if they both

think they own the datapath
◆ BPF link as safeguard to protect accidental stepping over each other

Part 3: Revamped design for BPF tc datapath

33

34

Revamped design for tc BPF datapath

Let’s take a step back for a moment

➔ Back in 2015 we added (e)BPF support for cls_bpf because “at that time it kind of fit”
➔ Fast forward to 2022 its usage has skyrocketed, so ... can we do better today?

[https://lore.kernel.org/netdev/cover.1425208501.git.daniel@iogearbox.net/]

https://lore.kernel.org/netdev/cover.1425208501.git.daniel@iogearbox.net/

35

Revamped design for tc BPF datapath

Let’s take a step back for a moment

➔ Back in 2015 we added (e)BPF support for cls_bpf because “at that time it kind of fit”
➔ Fast forward to 2022 its usage has skyrocketed, so ... can we do better today?
➔ Lessons learned from a software datapath perspective

◆ Relevant parts today mainly actual Qdiscs like sch_fq, sch_fq_codel
◆ ‘Fake’ Qdisc ingress/egress hook (with few exceptions) mainly used for:

● Slow-path fallback for hardware offloads (e.g. ovs)
● tc BPF software datapath

◆ From UX cls_bpf too hard to use ... libbpf with tc BPF API simplified it a lot

36

Revamped design for tc BPF datapath

Lets take a step back for a moment

➔ Back in 2015 we added (e)BPF support for cls_bpf because “at that time it kind of fit”
➔ Fast forward to 2022 its usage has skyrocketed, so ... can we do better today?
➔ Lessons learned from a software datapath perspective

◆ Relevant parts today mainly actual Qdiscs like sch_fq, sch_fq_codel
◆ ‘Fake’ Qdisc ingress/egress hook (with few exceptions) mainly used for:

● Slow-path fallback for hardware offloads (e.g. ovs)
● tc BPF software datapath

◆ From UX cls_bpf too hard to use ... libbpf with tc BPF API simplified it a lot

(Extract from example)

37

Revamped design for tc BPF datapath

Lets take a step back for a moment

➔ Back in 2015 we added (e)BPF support for cls_bpf because “at that time it kind of fit”
➔ Fast forward to 2022 its usage has skyrocketed, so ... can we do better today?
➔ Lessons learned from a software datapath perspective

◆ Relevant parts today mainly actual Qdiscs like sch_fq, sch_fq_codel
◆ ‘Fake’ Qdisc ingress/egress hook (with few exceptions) mainly used for:

● Slow-path fallback for hardware offloads (e.g. ovs)
● tc BPF software datapath

◆ From UX cls_bpf too hard to use ... libbpf with tc BPF API simplified it a lot

(Extract from example)

BUT: Given no ownership
model, the detachment
doesn’t remove the
sch_clsact / cls_bpf.

38

Revamped design for tc BPF datapath

Let’s take a step back for a moment

➔ Requirements for fresh design today:
◆ fd-based, so that BPF link blends in perfectly

39

Revamped design for tc BPF datapath

Let’s take a step back for a moment

➔ Requirements for fresh design today:
◆ fd-based, so that BPF link blends in perfectly
◆ Multi-attach required, but must be efficient

40

Revamped design for tc BPF datapath

Let’s take a step back for a moment

➔ Requirements for fresh design today:
◆ fd-based, so that BPF link blends in perfectly
◆ Multi-attach required, but must be efficient
◆ Minimal overhead entry point into BPF program

41

Revamped design for tc BPF datapath

Let’s take a step back for a moment

➔ Requirements for fresh design today:
◆ fd-based, so that BPF link blends in perfectly
◆ Multi-attach required, but must be efficient
◆ Minimal overhead entry point into BPF program
◆ Easy-to-program/consume API for developers

42

Revamped design for tc BPF datapath

Let’s take a step back for a moment

➔ Requirements for fresh design today:
◆ fd-based, so that BPF link blends in perfectly
◆ Multi-attach required, but must be efficient
◆ Minimal overhead entry point into BPF program
◆ Easy-to-program/consume API for developers
◆ Not ‘polluting’ stack with yet another hook

43

Revamped design for tc BPF datapath

Let’s take a step back for a moment

➔ Requirements for fresh design today:
◆ fd-based, so that BPF link blends in perfectly
◆ Multi-attach required, but must be efficient
◆ Minimal overhead entry point into BPF program
◆ Easy-to-program/consume API for developers
◆ Not ‘polluting’ stack with yet another hook
◆ Must integrate with old-style cls_bpf for migration path

44

Revamped design for tc BPF datapath

Let’s take a step back for a moment

➔ Requirements for fresh design today:
◆ fd-based, so that BPF link blends in perfectly
◆ Multi-attach required, but must be efficient
◆ Minimal overhead entry point into BPF program
◆ Easy-to-program/consume API for developers
◆ Not ‘polluting’ stack with yet another hook
◆ Must integrate with old-style cls_bpf for migration path
◆ Must support tc BPF programs 1:1 (or very close to it)

45

Revamped design for tc BPF datapath

Overview

tc {ingress,egress}

sch_clsact (‘fake’ qdisc)

cls_abc act_xyz

(“Qdisc”)

bpf progcls_bpf (da) Old-style, no change in behavior

(“Classifier”)

(“Action”)

TC_ACT_UNSPEC

TC_ACT_UNSPEC

46

Revamped design for tc BPF datapath

Overview

tc {ingress,egress}

sch_clsact (‘fake’ qdisc)

cls_abc act_xyz

(“Qdisc”)

bpf progcls_bpf (da)

(“Classifier”)

(“Action”)

TC_ACT_UNSPEC

TC_ACT_UNSPEC

47

Revamped design for tc BPF datapath

Overview

tc {ingress,egress}

sch_clsact (‘fake’ qdisc)

cls_abc act_xyz

(“Qdisc”)

bpf progcls_bpf (da)

(“Classifier”)

(“Action”)

TC_ACT_UNSPEC

TC_ACT_UNSPEC

bpf prog

TC_ACT_UNSPEC

New-style, fd-based

48

Revamped design for tc BPF datapath

Overview

tc {ingress,egress}

sch_clsact (‘fake’ qdisc)

cls_abc act_xyz

(“Qdisc”)

bpf progcls_bpf (da)

(“Classifier”)

(“Action”)

TC_ACT_UNSPEC

TC_ACT_UNSPEC

bpf prog

TC_ACT_UNSPEC

bpf prog

49

Revamped design for tc BPF datapath

Overview

tc {ingress,egress}

bpf prog

TC_ACT_DROP

bpf prog

(But, if no old-style used, then not invoked at all.)

TC_ACT_UNSPEC

50

Revamped design for tc BPF datapath

Overview

tc {ingress,egress}

bpf progbpf prog

fd-style attachment via bpf(2) through
BPF_NET_{INGRESS,EGRESS}

51

Revamped design for tc BPF datapath

__netif_receive_skb_core:

Entry as-is

52

Revamped design for tc BPF datapath
sch_handle_ingress:

Only action codes which are
actually used in BPF context

53

Revamped design for tc BPF datapath

sch_run_progs:

Main loop over cache
friendly program array

54

Revamped design for tc BPF datapath
sch_cls_ingress (old-style):

Old-style tc remaps into
more generic action codes

55

Revamped design for tc BPF datapath

Comparison for BPF point to entry

bpf_prog_a04f5eef06a7f555()

// list: for each cls_bpf_prog: bpf_prog_run()

cls_bpf_classify()

// list: for each tp: tp->classify()

// (return path: conditional tc_skb_ext_alloc)

tcf_classify()

sch_handle_ingress()

__netif_receive_skb_list_core()

netif_receive_skb_list_internal()

bpf_prog_a04f5eef06a7f555()

// array: for each item: bpf_prog_run()

sch_run_progs()

sch_handle_ingress()

__netif_receive_skb_list_core()

netif_receive_skb_list_internal()

56

Revamped design for tc BPF datapath

Comparison for BPF point to entry

tc {ingress,egress}

sch_clsact (‘fake’ qdisc)

(“Qdisc”)

bpf progcls_bpf (da)

(“Classifier”) TC_ACT_OK

tc {ingress,egress} bpf prog

TC_ACT_OK

before: 59 cycles

after: 33 cycles

(AMD Ryzen 9 3950X, defaults wrt Spectre mitigations, disabled IRQ, disabled CPU freq scaling, disabled idle states, pinned to 1 core)

(ubench when cache hot)

57

Revamped design for tc BPF datapath

User API walkthrough

User application for attaching BPF_NET_{INGRESS,EGRESS}:

58

Revamped design for tc BPF datapath

User API walkthrough
User application for query:

59

Revamped design for tc BPF datapath

User API walkthrough

User application for detaching BPF_NET_{INGRESS,EGRESS}:

60

Revamped design for tc BPF datapath

Short summary

➔ fd-based tc BPF prog installation via bpf(2) where BPF links are then implemented upon
◆ For ease of initial migration supports also regular BPF attach API

➔ Multi-attach for ingress/egress entry array currently up to 32 slots each
◆ Same prio concept as rest of tc, including prio auto-allocation via IDR
◆ Same TC_ACT_* semantics to process/terminate pipeline

➔ Compat with old-style tc framework and same hook reuse
◆ For old-style there’s in-kernel API for sch_clsact/ingress to attach

Part 4: Integration of BPF links for tc

61

62

Integration of BPF links for tc BPF

Kernel-side

➔ Supported for fd-based tc BPF datapath
➔ Contains device, priority, location attributes
➔ Implements attach/(atomic) update/detach
➔ Implements link attach semantics mentioned earlier

to solve ownership problem described in Part 1

63

Integration of BPF links for tc BPF

User API walkthrough

Bare dummy programs:
Two new tc-style sections

64

Integration of BPF links for tc BPF

User API walkthrough

User application for attaching both:

65

Thanks! Questions, feedback, comments?

PoC: https://github.com/cilium/linux/commits/pr/bpf-tc-links

https://github.com/cilium/linux/commits/pr/bpf-tc-links

