& L

Cilium's BPF kernel datapath revamped

Daniel Borkmann & Nikolay Aleksandrov, Isovalent

Linux

Plumbers
Conference

Dublin, Ireland September 12-14, 2022

Agenda: Ongoing development items

NI 2 2

Part 1: Interference at prio 1 handle 1 ...
Part 2: tc object model vs BPF links

Part 3: Revamped design for tc BPF datapath
Part 4: Integration of BPF links for tc

Part 1: Interference at prio 1 handle 1 ...

Cilium’s BPF datapath overview

Host / initial netns / \
Pod / own netns g

veth |[<€
A

A eBPF

> Y >
veth veth
WenPF ||)

Cilium’s BPF datapath overview

Host / initial netns / \
Pod / own netns g

tcBPF [T | veth |«

§ N
BPF eBPF|
e NJ() | HeBPF

tcBPF [
XDP BPF

veth veth

HeBPF WenPF || .

sock_addr/sk BPF

Cilium’s BPF datapath overview

Host / initial netns Generally:
- Cilium assumes network ownership from a K8s CNI PoV

tc BPF F - Various CNI chaining options exist and work

- Usually only around IPAM and netdev setup
tc BPF F a’eBPF) delegation, but not around BPF
(ontional) - Example: AWS VPC CNI plugin
optiona

For tc BPF:

- Cilium sets up netdevs, moves them into target netns,
installs Pod addresses/routes
- Installs single cls_bpf in ‘da” mode with: prio 1, handle 1
- Option for advanced users to customize prio
- All bets are off in this case and up to user
- Example: if prog at prio 1 returns TC_ACT_OK
then Cilium is bypassed
sock_addr/sk Bf - Should be well-understood in general

tcBPF [
XDP BPF

Tale from user staging env ...

[xyz] is reporting issues in a dev environment cluster.

They report "the clusters have become unhealthy and multiple pods are in CrashLoop", though it is not clear if they are
talking about workload pods, or cilium pods. Current best guess is that it is just workload pods that are impacted.

They do report that the health check in the "cilium status"” output in the "bad" cluster is reporting nodes that are
"unreachable” in terms of Endpoints, but not in terms of the Node. This suggests routing issues related to pod CIDRs, but

not the underlying fabric.

Tale from user staging env ...

« They have other environments with pretty much the same configuration and Cilium version which is working
« In this environment, there are nightly reboots. That's probably the most significant difference they can think of
« They deleted all policies so the policy drops noted earlier are not relevant as we are still seeing connectivity failures

« We ran various network connectivity tests across different nodes
o Realized there are good nodes and bad nodes

o We asked them for sysdumps targeting the good and bad nodes

« They will also pause the nightly reboots to see if the nodes stay in a consistent state. They suspect that the node
reboots might be exposing an issue with their configuration (outside of Cilium)

Tale from user staging env ...

.. and debugging continued!

No failures in Cilium agent log, looked all reasonably normal
User ‘sysdump’ with all configs and Cilium state looked fine
No reports of packet drops, no issues from a policy angle
Routes looked good, nothing suspicious from netfilter

0

Tale from user staging env ...

... until we noticed:

[NN) bpftool-net-show.md
xdp:

tc:
lo(1) clsact/ingress classifier_ingress_securityl 4@26531992_12332 id 769

.....

lo(1) clsact/egress classifier_egress_securityl_4026531992_12332 id 770

Sesses ree

1xc@0d3498b101f(21) clsact/ingress classifier_ingress_security21 4026531992_12332 id 1575
1xc@0d3498b101f(21) clsact/ingress bpf_lxc.o: [from-container] id 1555
1xc@0d3498b101f(21) clsact/egress classifier_egress_security2l 4026531992_12332 id 1576

Lxc8e6b5222b8cc(57) glgggt/ingress classifier_ingress_security57_4026531992_12332 id 1887
1xcBe6b5222b8cc(57) clsact/ingress bpf_lxc.o: [from-container] id 1877

.....

.......................

flow_dissector:

10

Tale from user staging env ...

... until we noticed:

Ixc devices
are created
by Cilium,
one for
each Pod.

=

[NN) bpftool-net-show.md
xdp:

tc:
lo(1) clsact/ingress classifier_ingress_securityl 4@26531992_12332 id 769
lo(1) clsact/egress classifier_egress_securityl_4026531992_12332 id 770

Sesses ree

1xc@0d3498b101f(21) clsact/ingress classifier_ingress_security2l_4026531992_12332 id 1575
1xc@0d3498b101f(21) clsact/ingress bpf_lxc.o: [from-container] id 1555
1xc@0d3498b101f(21) clsact/egress classifier_egress_security2l 4026531992_12332 id 1576

LxcBe6b5222b8cc(57) g1§ggt/ingress classifier_ingress_security57_4026531992_12332 id 1887
1xcBe6b5222b8cc(57) clsact/ingress bpf_lxc.o: [from-container] id 1877

ssgesens . ¥ TTT Slegevesengey

........................

flow_dissector:

11

Tale from user staging env

... until we noticed:

| NN
xdp:

bpftool-net-show.md

tc:

lo(1) clsact/ingress classifier_ingress_securityl 4@26531992_12332 id 769
10(1) c"l.s,a.qt/egress classifier_egress_securityl 4626531992_12332 id 770

We do attach to
clsact + {ingress,
egress} hooks.

flow_dissector:

12

Tale from user staging env

... until we noticed:

[NN) bpftool-net-show.md
xdp:

tc:
lo(1) clsact/ingress cla551f1er _ingress_securityl_4026531992_12332 id 769
lo(ier_egress_securityl_4026531992_12332 id 770

xc ngress classifier_ingress_security21_4026531992_12332 id 1575
1xc i i

bpf_Ixc programs are

sees

Ixcq ° . gress classifier_egress_security2l_4026531992_12332 id 1576

xcg installed by Cilium ngress classifier_ingress_security57_4026531992_12332 id 1887
xc ‘ - iner’ logress bpf_lxc.o:[from-container] id 1877

xca wj ‘from-container SS c1a551f1er _ingress_securityl59_4026531992_12332 id 2647

or ‘to-container’

................

13

Tale from user staging env ...

... until we noticed:

[NN) bpftool-net-show.md

fier_egress_securityl_4026531992_12332 id 770
/ingress classifier_ingress_security21_4026531992_12332 id 1575
/ingress bpf_lxc.o: [from-container] id 1555

........................

flow_dissector:

14

Tale from user staging env ...

... until we noticed:

O classifier_egress_security Pull requests Issues Marketplace Explore

Repositories 0 3 commit results
Code 0
DataDog/datadog-agent Verified L[,] 186d25a <>
Commits o [CWS] TC classifiers (#10553)
4 people committed on 24 Mar X
Issues 0
Discussions 9 BFG7274/datadog-| Verified L[;] 186d25a <
Packages 0 [CWS] TC classifiers (#10553)
4 people committed on 24 Mar
Marketnlace 0

15

Tale from user staging env ...

... until we noticed:

| @

20 © k8s-pods-20220701-213855.txt
datadog &'a':c'édog—c'w;'t'ér—agent-6§'6bb79§'7'i>-m8f24 0/1 CrashLoopBackOff 66
datadog dd-agent-217mv 4/4 Running 0
datadog dd-agent-496c5 4/4 Running 0
datadog dd-agent-4dmb6 4/4 Running 0
datadog dd-agent-3btwx 4/4 Running 0
datadog dd-agent-3kjvv 4/4 Running 0
datadog dd-agent-5znxb 4/4 Running 0
datadog dd-agent-6q8j2 . | 4/4 Running 0
datadog dd-agent-6srg2 Bingo! 4/4 Running 0
datadog dd-agent-745wq 4/4 Running 0
datadog dd-agent-b595q 4/4 Running 0
datadog dd-agent-ch887 4/4 Running 0
datadog dd-agent-kngfq 4/4 Running 0
datadog dd-agent-kvIsk 4/4 Running 0
datadog dd-agent-kx4vé 4/4 Running 0
datadog dd-agent-lmnjd 4/4 Running 0
datadog dd-agent-mdpc4 4/4 Running 0
datadog dd-agent-qjd7b 4/4 Running 0

16

Tale from user staging env ...

.. th:dr:

>
-
>
->

3rd party agent was replacing all cls_bpf instances and removing programs underneath us
Periodically attaching to all devices with same prio 1, handle 1 which we use
Cilium agent couldn’t see issue and assumed all is fine

Removing 3rd party DaemonSet and restarting Cilium one, everything worked again

17

Tale from user staging env ...

... how can we solve the ownership problem? Enter BPF links!

Subject: [PATCH bpf-next 0/3] Introduce pinnable bpf link kernel abstraction
Date: Fri, 28 Feb 2020 14:39:45 -0800 [thread overview]
Message-ID: <20200228223948.360936-1-andriinffb.com> (raw)

This patch series adds bpf link abstraction, analogous to libbpf's already
existing bpf link abstraction. This formalizes and makes more uniform existing
bpf_ link-like BPF program link (attachment) types (raw tracepoint and tracing
links), which are FD-based objects that are automatically detached when last
file reference is closed. These types of BPF program links are switched to
using bpf link framework.

FD-based bpf_ link approach provides great safety guarantees, by ensuring there
is not going to be an abandoned BPF program attached, if user process suddenly
exits or forgets to clean up after itself. This is especially important in

production environment and is what all the recent new BPF link types followed.

One of the previously existing inconveniences of FD-based approach, though,

was the scenario in which user process wants to install BPF link and exit, but

let attached BPF program run. Now, with bpf link abstraction in place, it's

easy to support pinning links in BPF FS, which is done as part of the same

patch #1. This allows FD-based BPF program links to survive exit of a user

process and original file descriptor being closed, by creating an file entry

in BPF FS. This provides great safety by default, with simple way to opt out

for cases where it's needed. 18

BPF links as ‘container’ object for BPF progs

BPF links:
-> Represents attachment of BPF prog to BPF hook point fd _
.y C ., App >| BPF prog
. Abstraction ‘containing’ BPF program
. Holds (single) reference to keep BPF program alive l
. Hook points do not reference BPF link, only " BPF link
application fd or pinning does App >

. Holds meta-data specific to attachment BPF prog
IS Create/Update/Detach/Get{Next,FdByld}

. Application deals with link fd instead of program fd,
meaning, program fd is safe to close after link is created

19

BPF links as ‘container’ object for BPF progs

BPF links:
-> Represents attachment of BPF prog to BPF hook point fd _
.y C ., App >| BPF prog
. Abstraction ‘containing’ BPF program
. Holds (single) reference to keep BPF program alive ‘
. Hook points do not reference BPF link, only " BPF link
application fd or pinning does App >

. Holds meta-data specific to attachment BPF prog
IS Create/Update/Detach/Get{Next,FdByld}

. Application deals with link fd instead of program fd,
meaning, program fd is safe to close after link is created
-> Explicitly allows to prevent prog detachment on process exit when link pinned
(e.g. think of tracing app, can be upgraded on the fly while prog continues to run)

20

BPF links as ‘container’ object for BPF progs

BPF links:
-> Co-exists with non-link attachments for {single,multi}-attach supported hooks
-> Key properties regarding attachment
. BPF links cannot replace other BPF links
. BPF links cannot replace non-BPF links
. non-BPF links cannot replace BPF links
S (non-BPF links can replace non-BPF links)

21

BPF links as ‘container’ object for BPF progs

BPF links:
-> 9 link types exist today, mostly relevant to tracing and partially networking
S raw tracepoint, tracing, perf_event, kprobe multi
. XDP, netns, cgroup, struct_ops, iter

-> BUT: no tc BPF link today!

22

Part 2: tc object model vs BPF links

tc recap in a nutshell

tc objects relevant for BPF attachment:

da: ‘direct action’, meaning BPF program
returns a verdict from below instead of calling
(“Qdisc”) act_xyz. Crucial (!) otherwise tools like Cilium
wouldn’t exist today as legacy tc doesn’t scale.

/ sch_clsact (“fake’ qdisc)

tc {ingress,egress}

TC_ACT_UNSPEC:

(“Classifier”) | inue in pipeli
| - Continue in pipeline
Al Bl (s TC_ACT_OK:
_bpf (da) ﬁ bpfprog | ~ &

- Terminate and pass to stack?/driver|

Y TC_ACT_SHOT:
- - - Terminate and drop
clo B IER]) 212 P TC_ACT_REDIRECT:
..................................... - Terminate and forward to given netdev
Y : TC_ACT_*:
cls_abc > act_xyz - Rest has not much relevance for BPF,

mostly dups of above or unsupported

(“Action”)

24

(non-BPF example)

tc recap in a nutshell

tc objects in context of Cilium:

-> Single entry point with immediate termination
-> Needed given BPF program implements complex policy/firewalling, load-balancing,
local forwarding to K8s Pods, tunnel/ipsec/wireguard mesh, etc

tc {ingress,egress}

Y

sch_clsact (‘fake’ qdisc)

Y

cls_bpf (da)

bpf prog

TC_ACT_OK

.| TC_ACT_SHOT

TC_ACT_REDIRECT

25

tc objects and BPF links?

How to marry both layers together ...

-> Tricky, tc has its own object model and configuration which does not fit well with BPF link
-> Think of BPF link semantics for tracing
. Link keeps the prog alive, so tracing can continue in pinned link when
process exits, and link ownership can be taken again by new process
S This kind of exists with cls_bpf except for the ‘ownership’ part

[B https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/]

26

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

tc objects and BPF links?

Original thoughts and goals:
-> Meta: Safe auto-detachment of tc BPF programs

knowing, leading to really bad consequences. It's especially important
for applications that are deployed fleet-wide and that don't "control"
hosts they are deployed to. If such application crashes and no one
notices and does anything about that, BPF program will keep running
draining resources or even just, say, dropping packets. We at FB had
outages due to such permanent BPF attachment semantics. With FD-based
bpf link we are getting a framework, which allows safe,
auto-detachable behavior by default, unless application explicitly
opts in w/ bpf_ link pin().

[B https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/]

27

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

tc objects and BPF links?

Original thoughts and goals:

bpf program is an object. That object has an owner or multiple owners.

A user process that holds a pointer to that object is a shared owner.

FD is such pointer. FD == std::shared_ptr<bpf prog>.

Holding that pointer guarantees that <bpf prog> will not disappear,

but it says nothing that the program will keep running.

For [ku]probe,tp,fentry,fexit there was always <bpf link> in the kernel.
It wasn't that formal in the past until most recent Andrii's patches,
but the concept existed for long time. FD == std::shared ptr<bpf link>
connects a kernel object with <bpf prog>. When that kernel objects emits
an event the <bpf link> guarantees that <bpf prog> will be executed.

[B https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/]

28

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

tc objects and BPF links?

Original thoughts and goals:

-> But flexibility is needed:

I think it depends on the environment, and yes, whether the orchestrator

of those progs controls the host [networking] as in case of Cilium. We
actually had cases where a large user in prod was accidentally removing

the Cilium k8s daemon set (and hence the user space agent as well) and only
noticed lhrs later since everything just kept running in the data path as
expected w/o causing them an outage. So I think both attachment semantics

[B https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/ |
29

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

tc objects and BPF links?

Original thoughts and goals:

-> BPF link would lock cls_bpf program detachment, but semantics from tracing are
not straight forward transferrable given we don’t have fd-based objects
. sch_clsact can just wipe the cls_bpf, so the link would have to lock the
former (or even the netdev) which gets into weird layering
S Other cls_* objects don’t fit into the big picture but intrusive to tc internals

[B https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/]

30

https://lore.kernel.org/bpf/094a8c0f-d781-d2a2-d4cd-721b20d75edd@iogearbox.net/

tc objects and BPF links?

Original thoughts and goals:

-> Earlier attempts intrusive/non-fitting to tc core, for example:

diff --git a/include/net/sch_generic.h b/include/net/sch_generic.h

index f£7a6el4491fb..bacd70bfc5ed 100644

--- a/include/net/sch_generic.h

+++ b/include/net/sch_generic.h

@@ -341,7 +341,11 @@ struct tcf proto ops {

int (*tmplt_dump)(struct sk_buff *skb,

struct net *net,
void *tmplt_priv);

+#if IS_ENABLED(CONFIG_NET_ CLS_BPF)
+ int (*bpf_link change)(struct net *net, struct tcf_proto *tp,

+ struct bpf prog *filter, void **arg, u32 handle,
+ u32 gen_flags);
+#endif

struct module *owner;

int flags;

}i

[https://lore.kernel.org/bpf/20210604063116.234316-1-memxor@gmail.com/]

31

https://lore.kernel.org/bpf/20210604063116.234316-1-memxor@gmail.com/

tc objects and BPF links?

Additional thoughts and goals:

-> Cilium: Safe ownership model of tc BPF programs
-> While cooperation between components can be possible (TC_ACT_UNSPEC),
it is also clear that it cannot be realized implicitly

. Most cloud native components shipped via containers, developed
by disjoint set of teams/companies/etc

. Verdict conflicts possible, so pipeline model here to stay with explicit
cooperation between BPF programs when feasible

S However: can't make two programs work correctly together if they
think they own the datapath

. BPF link as safeguard to protect accidental stepping over each other

32

Part 3: Revamped design for BPF tc datapath

33

Revamped design for tc BPF datapath

Let’s take a step back for a moment

-> Back in 2015 we added (e)BPF support for cls_bpf because “at that time it kind of fit”
-> Fast forward to 2022 its usage has skyrocketed, so ... can we do better today?

34

https://lore.kernel.org/netdev/cover.1425208501.git.daniel@iogearbox.net/

Revamped design for tc BPF datapath

Let’s take a step back for a moment

-> Back in 2015 we added (e)BPF support for cls_bpf because “at that time it kind of fit”

-> Fast forward to 2022 its usage has skyrocketed, so ... can we do better today?
-> Lessons learned from a software datapath perspective
S Relevant parts today mainly actual Qdiscs like sch_fqg, sch_fg_codel
. ‘Fake’ Qdisc ingress/egress hook (with few exceptions) mainly used for:
. Slow-path fallback for hardware offloads (e.g. ovs)

. tc BPF software datapath
S From UX cls_bpf too hard to use ... libbpf with tc BPF API simplified it a lot

35

Revampe

Lets take a ste

-> Back
-> Fast 1
-> Lessa

]

DECLARE_LIBBPF_OPTS(bpf_tc_hook, tc_hook,
.ifindex = LO_IFINDEX, .attach_point = BPF_TC_INGRESS);
DECLARE_LIBBPF_OPTS(bpf_tc_opts, tc_opts,
.handle = 1, .priority = 1);
bool hook_created = false;
struct tc_bpf xskel;
int err;

Libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
Llibbpf_set_print(libbpf_print_fn);

skel = tc_bpf__open_and_load();

if (!skel) {
fprintf(stderr, "Failed to open BPF skeleton\n");
return 1;

}

/* The hook (i.e. qdisc) may already exists because:
* 1. it is created by other processes or users
* 2. or since we are attaching to the TC ingress ONLY,

* bpf_tc_hook_destroy does NOT really remove the gdisc,
* there may be an egress filter on the qdisc
*/

err = bpf_tc_hook_create(&tc_hook);

if (lerr)
hook_created = true;

if (err && err != -EEXIST) {
fprintf(stderr, "Failed to create TC hook: %d\n", err);
goto cleanup;

}

tc_opts.prog_fd = bpf_program__fd(skel->progs.tc_ingress);
err = bpf_tc_attach(&tc_hook, &tc_opts);
if (err) {
fprintf(stderr, "Failed to attach TC: %d\n", err);
goto cleanup;

apath

|s_bpf because “at that time it kind of fit”
ted, so ... can we do better today?
perspective

hal Qdiscs like sch_fq, sch_fq_codel

(with few exceptions) mainly used for:

[r hardware offloads (e.g. ovs)

oath

... libbpf with tc BPF API simplified it a lot

(Extract from example)

<z
-~

36

Revampe

Lets take a ste

-> Back
-> Fast 1
-> Lessa

4

{

DECLARE_LIBBPF_OPTS(bpf_tc_hook, tc_hook,
.ifindex = LO_IFINDEX, .attach_point = BPF_TC_INGRESS);
DECLARE_LIBBPF_OPTS(bpf_tc_opts, tc_opts,
.handle = 1, .priority = 1);
bool hook_created = false;
struct tc_bpf xskel;
int err;

Libbpf_set_strict_mode(LIBBPF_STRICT_ALL);

Libbpf_set_print(1
et - 1 bpt_ope| BUT: Given no ownership
if (tskel) { model, the detachment

fprintf(st

return 1; | dOEsn’t remove the

: sch_clsact / cls_bpf.

/* The hook (i.e. m/exlsts Decause:

it L adbiiath
* 1. Y

=

2. or since we are attaching to the TC ingress ONLY,
bpf_tc_hook_destroy does NOT really remove the gdisc,
there may be an egress filter on the qdisc

*/
err = bpf_tc_hook_create(&tc_hook);
if (lerr)

hook_created = true;
if (err && err != -EEXIST) {
fprintf(stderr, "Failed to create TC hook: %d\n", err);
goto cleanup;

}

tc_opts.prog_fd = bpf_program__fd(skel->progs.tc_ingress);
err = bpf_tc_attach(&tc_hook, &tc_opts);
if (err) {
fprintf(stderr, "Failed to attach TC: %d\n", err);
goto cleanup;

apath

|s_bpf because “at that time it kind of fit”
ted, so ... can we do better today?
perspective

hal Qdiscs like sch_fq, sch_fq_codel

(with few exceptions) mainly used for:

[r hardware offloads (e.g. ovs)

oath

... libbpf with tc BPF API simplified it a lot

(Extract from example)

<z
-~

37

Revamped design for tc BPF datapath

Let’s take a step back for a moment

-> Requirements for fresh design today:
S fd-based, so that BPF link blends in perfectly

38

Revamped design for tc BPF datapath

Let’s take a step back for a moment

-> Requirements for fresh design today:
S fd-based, so that BPF link blends in perfectly
. Multi-attach required, but must be efficient

39

Revamped design for tc BPF datapath

Let’s take a step back for a moment

-> Requirements for fresh design today:
S fd-based, so that BPF link blends in perfectly
. Multi-attach required, but must be efficient

. Minimal overhead entry point into BPF program

40

Revamped design for tc BPF datapath

Let’s take a step back for a moment

-> Requirements for fresh design today:
S fd-based, so that BPF link blends in perfectly
. Multi-attach required, but must be efficient
. Minimal overhead entry point into BPF program
. Easy-to-program/consume API for developers

41

Revamped design for tc BPF datapath

Let’s take a step back for a moment

-> Requirements for fresh design today:

L 4

* & o o

fd-based, so that BPF link blends in perfectly
Multi-attach required, but must be efficient
Minimal overhead entry point into BPF program
Easy-to-program/consume API for developers
Not ‘polluting’ stack with yet another hook

42

Revamped design for tc BPF datapath

Let’s take a step back for a moment

-> Requirements for fresh design today:

L 4

* 6 6 o o

fd-based, so that BPF link blends in perfectly
Multi-attach required, but must be efficient

Minimal overhead entry point into BPF program
Easy-to-program/consume API for developers

Not ‘polluting’ stack with yet another hook

Must integrate with old-style cls_bpf for migration path

43

Revamped design for tc BPF datapath

Let’s take a step back for a moment

-> Requirements for fresh design today:

L 4

* & 6 o o o

fd-based, so that BPF link blends in perfectly
Multi-attach required, but must be efficient

Minimal overhead entry point into BPF program
Easy-to-program/consume API for developers

Not ‘polluting’ stack with yet another hook

Must integrate with old-style cls_bpf for migration path
Must support tc BPF programs 1:1 (or very close to it)

44

Revamped design for tc BPF datapath

Overview

(”QdiSC")

tc {ingress,egress}

7

> sch_clsact (‘fake’ gdisc)

lassifier”) VTC_ACT_U NSPEC

o

cls_bpf(da) [< > bpf prog

\/ TC_ACT_UNSPEC

cls_abc > act_xyz

(“Action”)

> Old-style, no change in behavior

45

Revamped design for tc BPF datapath

Overview

(”QdiSC”)

tc {ingress,egress}

7

(@)

sch_clsact (‘“fake’ qdisc)

“Classifier”) VTC_ACT_UNSPEC

cls_bpf(da) [< > bpf prog
|/ TC_ACT_UNSPEC
cls_abc > act_xyz

(“Action”)

46

Revamped design for tc BPF datapath

Overview

(”QdiSC”)

tc {ingress,egress}

e

|\

TC_ACT_UNSPEC

bpf prog

> sch_clsact (‘fake’ gdisc)

(@)

“Classifier”) VTC_ACT_UNSPEC

J

Y

New-style, fd-based

cls_bpf(da) [< > bpf prog
|/ TC_ACT_UNSPEC
cls_abc > act_xyz
(“Action”)

47

Revamped design for tc BPF datapath

Overview

(”QdiSC”)

tc {ingress,egress}

e

TC_ACT_UNSPEC

I

bpf prog

o

sch_clsact (‘“fake’ qdisc)

lassifier”) | TC_ACT_UNSPEC
cls_bpf(da) [<—> bpfprog
|/ TC_ACT_UNSPEC
cls_abc > act_xyz

(“Action”)

48

Revamped design for tc BPF datapath

Overview

e

tc {ingress,egress}

TC_ACT_UNSPEC

TC_ACT_DROP

|4]

I

bpf prog

(But, if no old-style used, then not invoked at all.)

49

Revamped design for tc BPF datapath

Overview

tc {ingress,egress}

e

I

bpf prog

fd-style attachment via bpf(2) through
BPF_NET_{INGRESS,EGRESS}

50

Revamped design for tc BPF datapath

__netif_receive_skb_core:

skip_taps:
#ifdef CONFIG_NET_INGRESS

if (static_branch_unlikely(&ingress_needed_key)) {
bool another = false; et Entry as-is
nf_skip_egress(skb, true); <7
skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
&another);

if (another)

goto another_round;
if (!skb)

goto out;

nf_skip_egress(skb, false);
if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)

goto out;

#endif

51

Revamped design for tc BPF datapath

sch_handle_ingress:
struct sch_entry xentry = rcu_dereference_bh(skb->dev->sch_ingress);

if (lentry)
return skb;

if (spt_prev) {
*ret = deliver_skb(skb, *pt_prev, orig_dev);
*pt_prev = NULL;

qdisc_skb_cb(skb)->pkt_len = skb->len;
sch_set_ingress(skb, true);

switch (sch_run_progs(entry, skb, true)) { IR *
case TC_ACT_UNSPEC: <
case TC_ACT_OK:
break;
default:
case TC_ACT_SHOT:
kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
return NULL;
case TC_ACT_REDIRECT:
__skb_push(skb, skb->mac_len);
if (skb_do_redirect(skb) == -EAGAIN) {
__skb_pull(skb, skb->mac_len);
*another = true;
break;
}
return NULL;
case TC_ACT_CONSUMED:
consume_skb(skb);
return NULL;
}

return skb;

Only action codes which are
actually used in BPF context

Revamped design for tc BPF datapath

sch_run_progs:

const struct bpf_prog_array_item xitem;
const struct bpf_prog *xprog;
int ret = TC_ACT_UNSPEC;

if (needs_mac)

__skb_push(skb, skb->mac_len);
item = &entry->items[0]; «
while ((prog = READ_ONCE(item->prog))) {

.
. ®
.
.
.
..

Main loop over cache
friendly program array

bpf_compute_data_pointers(skb);
ret = bpf_prog_run(prog, skb);
if (ret != TC_ACT_UNSPEC)
break;
item++;
¥
if (needs_mac)
_ skb_pull(skb, skb->mac_len);
return ret;

Revamped design for tc BPF datapath

sch_cls_ingress (old-style):

tc_skb_cb(skb)->mru = @;
tc_skb_cb(skb)->post_ct = false;

miniq = dev_sch_entry_pair(skb->dev->sch_ingress)->miniq;
if (!miniq) R I .
T R e Old-style tc remaps into

mini_qdisc_bstats_cpu_update(miniq, skb); more generic action codes
_ skb_pull(skb, skb->mac_len);

ret = tcf_classify(skb, minig->block, minig->filter_list, &res, false);

__skb_push(skb, skb->mac_len);

/* Only tcf related quirks below. x/

switch (ret) {

case TC_ACT_SHOT:
mini_gdisc_gstats_cpu_drop(miniq);
break;

case TC_ACT_OK:

case TC_ACT_RECLASSIFY:
skb->tc_index = TC_H_MIN(res.classid);
ret = TC_ACT_OK;
break;

case TC_ACT_STOLEN:

case TC_ACT_QUEUED:

case TC_ACT_TRAP:
ret = TC_ACT_CONSUMED;
break;

case TC_ACT_CONSUMED:
/* Bump refcount given skb is now in use elsewhere. x/
skb_get(skb);
break;

}

return ret;

Revamped design for tc BPF datapath

Comparison for BPF point to entry

bpf_prog_a@4f5eef06a7f555()

// list: for each cls_bpf_prog: bpf_prog run()
cls _bpf classify()

// list: for each tp: tp->classify()

// (return path: conditional tc_skb_ext_alloc)
tcf_classify()

sch_handle_ingress()

__netif _receive skb _list core()

netif receive_skb_list_internal()

bpf_prog_ae4f5eef06a7f555()

// array: for each item: bpf_prog_run()
sch_run_progs()

sch_handle_ingress()

__netif receive _skb_list core()

netif receive skb list internal()

55

Revamped design for tc BPF datapath

Comparison for BPF point to entry

(“Qdisc”)
/ sch_clsact (‘fake’ gdisc)
YR A (“Classifier”) TCACT_OK (ubench when cache hot)
cls_bpf (da) [<—>| bpfprog before: 59 cycles
TC_ACT_OK ﬂ
tc {ingress,egress} > <> bpfprog after: 33 cycles

(AMD Ryzen 9 3950X, defaults wrt Spectre mitigations, disabled IRQ, disabled CPU freq scaling, disabled idle states, pinned to 1 core)

56

Revamped design for tc BPF datapath

User APl walkthrough

User application for attaching BPF_NET_{INGRESS,EGRESS}:

DECLARE_LIBBPF_OPTS(bpf_prog_attach_opts, opt);
int prio = @; // == auto or #num
int ifindex = 1;

opt.flags = BPF_F_REPLACE;
opt.attach_priority = prio;
err = bpf_prog_attach_opts(prog_fd, ifindex, BPF_NET_INGRESS, &opt);

57

Revamped design for tc BPF datapath

User APl walkthrough

User application for query:
_u32 prog_cnt, attach_flags = 0;

Faas 1

prog_cnt = 0;
err = bpf_prog_query(ifindex, BPF_NET_INGRESS, @, &attach_flags,
NULL, &prog_cnt);

ASSERT_EQ(prog_cnt, 1, "prog_cnt");

memset(progs, @, sizeof(progs));

prog_cnt = ARRAY_SIZE(progs);

err = bpf_prog_query(ifindex, BPF_NET_INGRESS, @, &attach_flags,
progs, &prog_cnt);

ASSERT_EQ(prog_cnt, 1, "prog_cnt");
ASSERT_EQ(progs[@].prog_id, idl, "progl[@]_id");
ASSERT_EQ(progs[@].link_id, @, "prog[@]_1link");
ASSERT_EQ(progs[0].prio, 1, "progl[@]_prio");

AcceDT ENlnvanal1]l nwvan 34 n Mnvanl11 SAN) .

58

Revamped design for tc BPF datapath

User APl walkthrough

User application for detaching BPF_NET_{INGRESS,EGRESS}:

DECLARE_LIBBPF_OPTS(bpf_prog_detach_opts, opt);
—

opt.attach_priority = 1;

err = bpf_prog_detach_opts(@, ifindex, BPF_NET_EGRESS, &opt);

[5]

59

Revamped design for tc BPF datapath

Short summary

-

>

fd-based tc BPF prog installation via bpf(2) where BPF links are then implemented upon

S For ease of initial migration supports also regular BPF attach API
Multi-attach for ingress/egress entry array currently up to 32 slots each

. Same prio concept as rest of tc, including prio auto-allocation via IDR

. Same TC_ACT_* semantics to process/terminate pipeline

Compat with old-style tc framework and same hook reuse
. For old-style there’s in-kernel API for sch_clsact/ingress to attach

60

Part 4: Integration of BPF links for tc

Integration of BPF links for tc BPF

Kernel-side

Vil

Supported for fd-based tc BPF datapath
Contains device, priority, location attributes
Implements attach/(atomic) update/detach

struct bpf_tc_link {

Implements link attach semantics mentioned earlier

to solve ownership problem described in Part 1

static const struct bpf_link_ops bpf_tc_link_lops

. release
.detach
.dealloc
.update_prog
.show_fdinfo
.fill_link_info

struct bpf_link link;
struct net_device xdev;

u32 priority;
u32 location;

sch_link_release,
sch_link_detach,
sch_link_dealloc,
sch_link_update,
sch_link_fdinfo,
sch_link_fill_info,

62

Integration of BPF links for tc BPF

User APl walkthrough

Bare dummy programs:

SEC("tc/ingress") .
int tc_handler_in(struct __sk_buff *skb)
{

Feund

return TC_ACT_UNSPEC;
}

SEC("tc/egress")
int tc_handler_eg(struct __sk_buff *skb)
{

[...]]

return TC_ACT_UNSPEC;

Two new tc-style sections

Integration of BPF links for tc BPF

User APl walkthrough

User application for attaching both:

int ifindex = 1;

int prio = @; // == auto or #num
struct test_tc_link xskel;
struct bpf_link xlink;

skel = test_tc_link__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_load"))
goto cleanup;

link = bpf_program__attach_tc(skel->progs.tc_handler_eg, ifindex, prio);
if (!ASSERT_OK_PTR(link, "link_attach"))

goto cleanup;
skel->links.tc_handler_eg = link;

link = bpf_program__attach_tc(skel->progs.tc_handler_in, ifindex, prid);
if (!ASSERT_OK_PTR(link, "link_attach"))

goto cleanup;
skel->links.tc_handler_in = link;

[..a]
cleanup:
test_tc_link__destroy(skel);

64

Thanks! Questions, feedback, comments?

PoC: https://github.com/cilium/linux/commits/pr/bpf-tc-links

O
o5

o050

https://github.com/cilium/linux/commits/pr/bpf-tc-links

