Networking resource control
with per-cgroup LSM

Presenter: Stanislav Fomichev, Google
Contributors: Mahesh Bandewar, YiFei Zhu, Wat Lim

Linux Plumbers Conference, 2022

What is "networking resource control"?

e Multiple workloads (containers) on the same machine

e Might have different policies and priorities

e Orthogonal to networking namespaces, the tasks might or might not run in a netns depending on
the environment settings

o networking namespacing is about isolating networking environment
o cgroupis about controlling what the task can do in this environment
e For each container, we'd like to have:
o cgroup_id or cgroup_id-like unique identifier - something to get to container policy from skb
o enforce different socket options and set defaults
o enforce some other networking syscalls (socket(), bind())

Where is networking policy coming from?

e Upon task startup, container management system populates the policy for the task
o thispolicyisstored in BPF cgroup local storage

e Some policy should be applied by default
o unconditionally set socket's priority upon socket creation

e Some policy can be optionally exercised by the task itself
o accomplished via setsockopt() calls from the task

What exactly do we want to control?

e SO_PRIORITY - carry metadata to uniquely identify the container, which means:
o SO_PRIORITY prohibited to be set directly by the tasks
o SO_PRIORITY has to be set by the kernel (bpf)
o long-term: converge on cgroup_id, still depend on it due to legacy HTB assumptions everywhere
e |P_TOS - per-container list for which TOS values it might use
e List of ports which containers might bind to / listen on (mostly from historic borg requirements)
e Prohibit IPv4
e Control permission for Google-only socket options

Note, sandboxing (doing netns unshare in this cgroup) should ignore most of the above

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf

How it has been done historically?

e Custom networking cgroup, similar to upstream net_cls / net_prio in the kernel
e Tried toupstream long time ago, but at that point net_cls / net_prio were already in place and were
largely doing the same things

What's wrong with custom cgroup?

e Constant source of pain:

o Rebases breaking it

o Upstream breaking it (we, somewhat unconventional, also run BPF on top of it)
e Want to be closer to upstream:

o Thereisreally no secret sauce in here

o Doingsimilar resource control might be useful for others

o Still vl based which is deprecated and doesn't get any new BPF features

So what are we trying to do?

Get rid of custom kernel patches

Redo existing functionality with BPF

Not widely deployed, but the experimental data is promising
Next slides show some examples of the functionality

IP_TOS/IPV6_TCLASS

e Have afixed set of supported TOS values in cgroup local storage
e When task bind()'s or calls setsockopt(..., IP_TQS, ...) - compare the value against the list

IP_TOS

_section("cgroup/setsockopt") int _setsockopt(struct bpf_sockopt *ctx)
{

struct *cg = bpf_get_local_storage(...);

if (ctx->level == 1pprOTO 1P && CtX->0ptname == IP_TOS)

return valid_tos_range(ctx, cg); // simple range checks

Limit bind ports

e Essentially the sameidea asin IP_TOS, but applied at bind hooks
e Only about lower 16k ports, can't affect the ones selected by autobind

IPv4 "hiding"”

e Weusedtodoreal hiding where cgroup knob would completely hide IPv4 addresses on the
interfaces (via proc/netlink/etc)
o Alotof things prever v4 address as soon at something v4-related shows up in the environment
e socket(AF_INET) would return -EAFNOSUPPORT
Can't do all of that with BPF, doing only socket(AF_INET) part
e Oiriginally in BPF were returning -EPERM, but some runtimes aren't happy, from JRE:

if ((sock = socket(proto, SOCK_DGRAM, @)) < 0) {
// If we lack support for this address family or protocol,
// don't throw an exception.
if (errno != EPROTONOSUPPORT && errno != EAFNOSUPPORT) {

IPv4 "hiding"”

_section("cgroup/sock") int _sock(struct bpf_sockopt *ctx)
{
struct *cg = bpf_get_local_storage(...);
if (ctx->family == AF_INET && !(cg->permissions & PERMITTED_AF_INET)) {
bpf_set_retval(-EAFNOSUPPORT);

return-1;

SO_PRIORITY (naive)

e Set default socket priority upon creation
e Seems to be super easy with BPF_PROG_TYPE_CGROUP_SOCK which triggers upon socket

creation

e Thedevilisinthe details
o Doesn't trigger for passive open
o Doesn't trigger for non-INET families (AF_PACKET)

SO_PRIORITY (naive)

_section("cgroup/sock") int _sock(struct bpf_sock *ctx)
{

struct *cg = bpf_get_local_storage(...);

// Not enough to catch every socket :-(

ctx->priority = cg->priority;

How does per-cgroup LSM fit into the picture?

So far we were able to leverage existing networking hooks

However, SO_PRIORITY program doesn't work 100%
BPF_PROG_TYPE_CGROUP_SOCK triggers only for AF_INET/AF_INET6
BPF_PROG_TYPE_CGROUP_SOCK triggers only for "active" sockets
What do we do?

o Add more hooks?:-(

Per-cgroup LSM

e Same as regular BPF LSM, but can be attached to a particular cgroup
e Behind the scenes creates fentry-like trampoline that demuxes into cgroup
o Need to provide extra attach_btf _id to indicate LSM hook
e bpf getsockopt helper to mutate socket state
e Seetools/testing/selftests/bpf/prog_tests/Ism_cgroup.c for more examples
e Addresses our issue with existing BPF_CGROUP_INET_SOCK_CREATE not triggering where we
want it to trigger

SO_PRIORITY

e Canleverage several existing LSM hooks to initialize default socket state:
e Ism_cgroup/socket_post_create - after active socket has been allocated
e Ism_cgroup/inet_csk_clone - after passive socket has been allocated

SO_PRIORITY

SEC("Ism_cgroup/inet_csk_clone")
int BPF_PROG(socket_clone, struct sock *newsk, const struct request_sock *req)

{
bpf_setsockopt(newsk, SOL_SOCKET, SO_PRIORITY, &prio, sizeof(prio));

}

// same for "Ism_cgroup/socket_post_create"

NET_RAW_XMIT

e TX-only version of NET_RAW capability
e For prober containers, we'd like to be able to send out raw packets only
o both PF_INET6/SOCK_RAW and PF_PACKET
e Want to protect (in init-netns) other containers from sniffing NET_RAW tenant
e Ism_cgroup/socket_bind
o prohibit rebinding
e |sm_cgroup/socket_post_create
o probit with protocol == 0 (aka ETH_P_ALL)

NET_RAW_XMIT

SEC("Ism_cgroup/socket_post_create")
int BPF_PROG(...)
{
if (family == AF_PACKET && protocol !=0)

return O; /* EPERM ¥/

NET_RAW_XMIT

SEC("Ism_cgroup/socket_bind")

int BPF_PROG(..., struct sockaddr *address, ...)

{
struct sockaddr_ll sa ={};
if (sock->sk->__sk_common.skc_family != AF_PACKET) return 1;
bpf_probe_read_kernel(&sa, sizeof(sa), address);

if (sa.sll_protocol) return O; /* EPERM ¥/

Challenges

Unprivileged users/readers (up until recently, everything requires CAP_BPF)

CAP_BPF doesn't work with user namespaces

No way to create unprivileged containers

Hierarchical properties have to be handled manually (programs need some way to communicate
who's been called and what has been handled)

Userspace expecting specific errno

sendmsg cmsg options are not enforced

Summary

e We were able to cover 95% of existing custom cgroup with BPF
e Stillin the experimental phase with promising results running this on some % of the fleet
e Some of the kernel BPF features we had to add to support our use-cases:

o

getsockopt & setsockopt hooks

m 0d01daéafc54 - bpf: implement getsockopt and setsockopt hooks
global mode for cgroup storage map

m 7d9c3427894f - bpf: Make cgroup storages shared between programs on the same cgroup
bpf_get_retval / bpf_set_retval

[b44123b4a3dc - bpf: Add cgroup helpers bpf_{get,set} retval to get/set syscall return value
Ism_cgroup

m 69fd337a975c - bpf: per-cgroup Ism flavor
rebinding to privileged ports

m 772412176fb9 - bpf: Allow rewriting to ports under ip_unprivileged_port_start

Questions? Suggestions?

