
Networking resource control
with per-cgroup LSM
Presenter: Stanislav Fomichev, Google

Contributors: Mahesh Bandewar, YiFei Zhu, Wat Lim

Linux Plumbers Conference, 2022

What is "networking resource control"?

● Multiple workloads (containers) on the same machine

● Might have different policies and priorities

● Orthogonal to networking namespaces, the tasks might or might not run in a netns depending on

the environment settings
○ networking namespacing is about isolating networking environment

○ cgroup is about controlling what the task can do in this environment

● For each container, we'd like to have:
○ cgroup_id or cgroup_id-like unique identifier - something to get to container policy from skb

○ enforce different socket options and set defaults

○ enforce some other networking syscalls (socket(), bind())

Where is networking policy coming from?

● Upon task startup, container management system populates the policy for the task
○ this policy is stored in BPF cgroup local storage

● Some policy should be applied by default
○ unconditionally set socket's priority upon socket creation

● Some policy can be optionally exercised by the task itself
○ accomplished via setsockopt() calls from the task

What exactly do we want to control?

● SO_PRIORITY - carry metadata to uniquely identify the container, which means:
○ SO_PRIORITY prohibited to be set directly by the tasks

○ SO_PRIORITY has to be set by the kernel (bpf)

○ long-term: converge on cgroup_id, still depend on it due to legacy HTB assumptions everywhere

● IP_TOS - per-container list for which TOS values it might use

● List of ports which containers might bind to / listen on (mostly from historic borg requirements)

● Prohibit IPv4

● Control permission for Google-only socket options

Note, sandboxing (doing netns unshare in this cgroup) should ignore most of the above

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43438.pdf

How it has been done historically?

● Custom networking cgroup, similar to upstream net_cls / net_prio in the kernel

● Tried to upstream long time ago, but at that point net_cls / net_prio were already in place and were

largely doing the same things

What's wrong with custom cgroup?

● Constant source of pain:
○ Rebases breaking it

○ Upstream breaking it (we, somewhat unconventional, also run BPF on top of it)

● Want to be closer to upstream:
○ There is really no secret sauce in here

○ Doing similar resource control might be useful for others

○ Still v1 based which is deprecated and doesn't get any new BPF features

So what are we trying to do?

● Get rid of custom kernel patches

● Redo existing functionality with BPF

● Not widely deployed, but the experimental data is promising

● Next slides show some examples of the functionality

IP_TOS/IPV6_TCLASS

● Have a fixed set of supported TOS values in cgroup local storage

● When task bind()'s or calls setsockopt(..., IP_TOS, ...) - compare the value against the list

IP_TOS

__section("cgroup/setsockopt") int _setsockopt(struct bpf_sockopt *ctx)

{

 struct *cg = bpf_get_local_storage(...);

 if (ctx->level == IPPROTO_IP && ctx->optname == IP_TOS)

 return valid_tos_range(ctx, cg); // simple range checks

}

Limit bind ports

● Essentially the same idea as in IP_TOS, but applied at bind hooks

● Only about lower 16k ports, can't affect the ones selected by autobind

IPv4 "hiding"

● We used to do real hiding where cgroup knob would completely hide IPv4 addresses on the
interfaces (via proc/netlink/etc)
○ A lot of things prever v4 address as soon at something v4-related shows up in the environment

● socket(AF_INET) would return -EAFNOSUPPORT
● Can't do all of that with BPF, doing only socket(AF_INET) part
● Originally in BPF were returning -EPERM, but some runtimes aren't happy, from JRE:

 if ((sock = socket(proto, SOCK_DGRAM, 0)) < 0) {

 // If we lack support for this address family or protocol,

 // don't throw an exception.

 if (errno != EPROTONOSUPPORT && errno != EAFNOSUPPORT) {

IPv4 "hiding"

__section("cgroup/sock") int _sock(struct bpf_sockopt *ctx)

{

 struct *cg = bpf_get_local_storage(...);

 if (ctx->family == AF_INET && !(cg->permissions & PERMITTED_AF_INET)) {

 bpf_set_retval(-EAFNOSUPPORT);

 return -1;

 }

}

SO_PRIORITY (naive)

● Set default socket priority upon creation

● Seems to be super easy with BPF_PROG_TYPE_CGROUP_SOCK which triggers upon socket

creation

● The devil is in the details
○ Doesn't trigger for passive open

○ Doesn't trigger for non-INET families (AF_PACKET)

SO_PRIORITY (naive)

__section("cgroup/sock") int _sock(struct bpf_sock *ctx)

{

 struct *cg = bpf_get_local_storage(...);

 // Not enough to catch every socket :-(

 ctx->priority = cg->priority;

}

How does per-cgroup LSM fit into the picture?

● So far we were able to leverage existing networking hooks

● However, SO_PRIORITY program doesn't work 100%

● BPF_PROG_TYPE_CGROUP_SOCK triggers only for AF_INET/AF_INET6

● BPF_PROG_TYPE_CGROUP_SOCK triggers only for "active" sockets

● What do we do?
○ Add more hooks? :-(

Per-cgroup LSM

● Same as regular BPF LSM, but can be attached to a particular cgroup

● Behind the scenes creates fentry-like trampoline that demuxes into cgroup
○ Need to provide extra attach_btf_id to indicate LSM hook

● bpf_getsockopt helper to mutate socket state

● See tools/testing/selftests/bpf/prog_tests/lsm_cgroup.c for more examples

● Addresses our issue with existing BPF_CGROUP_INET_SOCK_CREATE not triggering where we

want it to trigger

SO_PRIORITY

● Can leverage several existing LSM hooks to initialize default socket state:

● lsm_cgroup/socket_post_create - after active socket has been allocated

● lsm_cgroup/inet_csk_clone - after passive socket has been allocated

SO_PRIORITY

SEC("lsm_cgroup/inet_csk_clone")

int BPF_PROG(socket_clone, struct sock *newsk, const struct request_sock *req)

{

 bpf_setsockopt(newsk, SOL_SOCKET, SO_PRIORITY, &prio, sizeof(prio));

}

// same for "lsm_cgroup/socket_post_create"

NET_RAW_XMIT

● TX-only version of NET_RAW capability

● For prober containers, we'd like to be able to send out raw packets only
○ both PF_INET6/SOCK_RAW and PF_PACKET

● Want to protect (in init-netns) other containers from sniffing NET_RAW tenant

● lsm_cgroup/socket_bind
○ prohibit rebinding

● lsm_cgroup/socket_post_create
○ probit with protocol == 0 (aka ETH_P_ALL)

NET_RAW_XMIT

SEC("lsm_cgroup/socket_post_create")

int BPF_PROG(...)

{

 if (family == AF_PACKET && protocol != 0)

 return 0; /* EPERM */

}

NET_RAW_XMIT

SEC("lsm_cgroup/socket_bind")

int BPF_PROG(..., struct sockaddr *address, ...)

{

 struct sockaddr_ll sa = {};

 if (sock->sk->__sk_common.skc_family != AF_PACKET) return 1;

 bpf_probe_read_kernel(&sa, sizeof(sa), address);

 if (sa.sll_protocol) return 0; /* EPERM */

}

Challenges

● Unprivileged users/readers (up until recently, everything requires CAP_BPF)

● CAP_BPF doesn't work with user namespaces

● No way to create unprivileged containers

● Hierarchical properties have to be handled manually (programs need some way to communicate

who's been called and what has been handled)

● Userspace expecting specific errno

● sendmsg cmsg options are not enforced

Summary

● We were able to cover 95% of existing custom cgroup with BPF
● Still in the experimental phase with promising results running this on some % of the fleet
● Some of the kernel BPF features we had to add to support our use-cases:

○ getsockopt & setsockopt hooks
■ 0d01da6afc54 - bpf: implement getsockopt and setsockopt hooks

○ global mode for cgroup storage map
■ 7d9c3427894f - bpf: Make cgroup storages shared between programs on the same cgroup

○ bpf_get_retval / bpf_set_retval
■ b44123b4a3dc - bpf: Add cgroup helpers bpf_{get,set}_retval to get/set syscall return value

○ lsm_cgroup
■ 69fd337a975c - bpf: per-cgroup lsm flavor

○ rebinding to privileged ports
■ 772412176fb9 - bpf: Allow rewriting to ports under ip_unprivileged_port_start

Questions? Suggestions?

