g enfabrica

Can the Linux networking stack be used with very high speed
applications?

SEPTEMBER 2022

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Introduction €) enfabrica

Set out to answer a fundamental question:
How does the Linux networking stack scale as the line rate increases?

Stated another way: When 400G and 800G become common, will the S/W be ready?
e Get outin front on what is needed and start working on solutions

e Changes to Linux take time - way too much time (e.g., XDP H/W hints)

Scale “up” (pushing a single flow to line rate) is as important as scale “out” (multiple flows to reach
line rate)

e e.g, Machine Learning apps

Created a custom setup to investigate what is needed to scale S/W to higher line rates
e Able to push a single flow to over 646 782 Gbps and more than 31M pps

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 2

TeSt Setup g enfabrica

Off-the-shelf servers

Ryzen 9 Zen 3 cpu (5950x 16-core), 5GHz @

host A

128GB, DDR4, 3200 MT/s

userspace userspace
kernel ‘ kernel

Ubuntu 20.04 OS
stack
Unmodified 5.13.19 kernel

Xilinx FPGA - VCU1525

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. K

Getting Around Current Physical Limits €9 enfabrica

PCIl gen3 x16 (128 Gbps cap)

hostA | ' host B

2 QSFP28 100Gbps interfaces ! !
userspace userspace

|ldea: Payload in benchmark app is
meaningless. Why send it?
e Drop payload over the wire

kernel kernel

Key Point: Software stack sees actual
packet size and rate that TCP wants to narpayioad rsference
send

add payload reference
for data length

header only packets

No modification to kernel. Payload games
confined to driver and FPGA user logic

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 4

Zerocopy / Direct Data Placement € enfabrica

memcpy - never going to happen
e Speed limited to ~30Gbps with memcpy

e ZC /DDP type scheme is a requirement for high speed networking

Existing Linux Zerocopy APls
e Tx: fairly easy to use, but has its overhead
get_user_pages (and variants) plus reaping completions (recvmsg syscalls)

e RXx: very limited and tricky to use

Requires a specific MTU size and header split such that payloads are exactly PAGE_SIZE
Side band with memcpy for data less than PAGE_SIZE

Key Point: Modern workloads need hardware to land data in application buffers

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 5

Modified iperf3 to avoid memcpy € enfaprica

TX: Added support for ZC API (--zc_api option)
e Good enough for these tests to show intent - avoiding memcpy from userspace
e Extra CPU cycles for page pinning and completions is a factor, but not limiting one

Rx ZC APl is too limiting and not usable for generic testing
Mimic intent of ZC APl on Rx by dropping data

e --rx_drop option to iperf3 to use MSG_TRUNC with recvmsg

e Packets and data traverse networking stack as usual, attach to socket, process wakeup
e MSG_TRUNC drops payload to avoid memcpy to userspace

Net result is avoiding memcpy while still using existing socket APIs

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 6

Memory Management € enfabrica

400G at 4096 L2 MTU = 12+M pages per second
e Actual number depends on MTU and how S/W and H/W handle posted buffers

FPGA driver managed pages for packets similar to other high speed NIC drivers
e Page per packet to keep it simple across MTUs

e Max pps in tests 31+M pps means 31+M pages per second handled by driver
e Even split page for 1500 MTU means 16.5M pages per second

Avoid system page allocators
e Page pool infrastructure as the base layer
e Driver managed per-cpu cache on top (preferred allocation if available)

skb recycling via napi cache
e Use napi_build_skb over build_skb

Key Point: Current buffer management scheme has too much overhead

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 7

Reducing Packet Rate Handled by S/W €9 enfabrica

Amortize S/W stack overhead with more data per packet
e FIB lookup, socket lookup, tc and netfilter hooks, etc

MTU
e More payload per packet on the wire

TSO into S/W GRO or H/W LRO
e Goal is pushing effective MTU seen by S/W up to 64kB

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 8

TS0 -> S/W GRO

TSO

network stack

®

driver is handed a single
skb with a TCP payload
of size N * mss

®

H/W is expected to
generate N MTU
sized packets

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

GRO
S/W stack detects
network stack skbs belong to same

flow and coalesce data
into a single skb that
mirrors the one on the
Tx side

Driver creates skb for
each packet seen by
HIW

driver

Hw |

®

Those N packets
ideally arrive in order
and are processed by
H/W within the same

coalescing window

TSO -> H/W LRO

TSO

O,

driver is handed a single
skb with a TCP payload
of size N * mss

®

H/W is expected to
generate N MTU
sized packets

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

network stack

skb data:

frags

driver |

H/W
LRO

network stack

driver

®

Those N packets
ideally arrive in order
and are processed by
H/W within the same

coalescing window

Data Rates on the Wire with TSO/*RO

== No GRO == S/WGRO == H/WLRO

800
600 -
& 400
O
0]
200
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
L3 MTU

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Packet Rate on the Wire with TSO/*RO €9 enfabrica

== No GRO == S/WGRO == H/WLRO

35,000,000
30,000,000
25,000,000 |
20,000,000

15,000,000

packets per second

10,000,000

5 000,000

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L3 MTU

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 12

MTU / TSO Trade-off € enfabrica

== |[Pv4 == |Pv6 == Goal

66,000 -

65,000 — W1 I Y —— —

64,000 N ¢ \ L\ L VAT A O A | .
63,000 | QJ |

62,000 < Yeriryl I

61,000 -

TSO packet size

60,000

59,000

TSO Efficiency

57,000 = |Pv4 = IPV6
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000% . ek . an . s

|
L3 MTU 95.00%
[

58,000 . L

90.00%
[

85.00% ‘ | |
1000 2000 3000 4000 5000 6000

L3 MTU

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. (K

Reducing Packet Rate Handled by S/W €9 enfabrica

non-GRO/LRO case shows maximum pps for S/W stack: ~3M pps
e increasing MTU alone is insufficient

MTU affects TSO goal which affects S/W packet rate
GRO helps but S/W analysis of packet headers wastes CPU cycles

LRO:
e @1500 MTU: 31.7M pps on the wire -> 720k pps into software stack

e @9100 MTU: 8.3M pps on the wire -> 1.2M pps into software stack

Key Point: Need a solid, robust H/W based LRO scheme to scale up

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 14

Socket Buffers and Syscalls

B 1xsocket buffer [2x socket buffer

Keep the Tx pipeline primed

800

Reduce the overhead of using
sockets to get data to/from H/'W
600

More data per recvmsg /sendmsg
400

Gbps

syscall

More data queued up in socket 200

buffers

-l and -w args to iperf3 0
ORI S

b@&

L ¥ ¥ ¥ ¥ KK ¥ v W
F g

write()/sendmsg() size

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Socket Buffers and Syscalls €9 enfabrica

Comparison of 64M per = GAM/128M == 32M/64M
read/write, 128M socket buffer
vs 32M per read/write, 64M

socket buffer

600
Key Point: Need to manage , .,
datapath without system ©
calls
e 0 _uring does this via 200
user-kernel queues, but it
too is not sufficient 0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L3 MTU

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Hugepages g enfabrica

Tx ZC APl iov is passed to driver and then H/W

== Hugepages == 4kB pages

e 4kB page size = 17 fragments per TSO skb 800
e 2MB hugepage = 2-3 fragments per skb
e non-ZC path for TCP has 2-3 fragments per
skb M\/A/\\/V
More fragments per skb == more overhead) 400

e internal _get user pages fast and
skb_release data become prominent in perf

profi|es 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L3 MTU

Key Point: Reduce the overhead of the buffer
representation going through the networking
stack.

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 17

Congestion Control Algorithm € enfabrica

mm cubic == reno == dctcp == bbr

800 ‘ ’ ‘
\ |
600 il | 1 ‘ Y R A
3 400
O
o
200 ! |
NP AMWWTN\A_/\—______
0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L3 MTU

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Hardware Considerations - CPU €9 enfabrica

Speed is important
e CPU bound processing packets

L3 cache and task placement

e packet processing and application need to share L3 cache
e pinning means disabling irgbalance (static configuration)

e some CPU architectures make that more difficult

Zen 2 Zen 3
CPU 0 1 6 7 CPU 0 1 6 7
L1 cache 32kB 32kB 32kB 32kB L1 cache 32kB 32kB 32kB 32kB
L2 cache 512kB 512kB 512kB 512kB L2 cache 512kB 512kB 512kB 512kB
L3 cache 16MB 16MB L3 cache 32MB

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 19

Hardware Considerations € enfabrica

Memory Speed

e Epyc based servers with memory speed from 2400 MT/s to 3200 MT/s
e Ryzen servers with 3200 MT/s
e Populate ALL slots

NIC - bumped ring size of 8192
e irq driven system - too many packets land before irq handler runs
e See drops today with 200G nics and 4096 ring size

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 20

Scale OUt g enfabrica

VCU 1525 has 2 MACs

Isolated resources - task placement, device queues
e 700+ Gbps for each of 2 streams (750G on one, 750G on the other) at 4000 MTU

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 21

Kernel Regressions € enfabrica

mm 51319 wm 51543 == 517.12 == 519.0-rc2

800

W
W

600 ri 1A Y
|

Gbps

400 | 4

200
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L3 MTU

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 22

Misc. Tidbits €D enfabrica

Ubuntu based systems: Disable CONFIG_INIT_ON_ALLOC DEFAULT_ON
e page clearing on alloc is cpu intensive (i.e., performance killer)

Be weary of SMIs

Any packet socket running on the system kills performance
e e.g., tcpdump, lldpd
e all packets are cloned

Key Point: Application wanting high performance can be impacted by random events

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 23

Summary g enfabrica

Linux TCP stack can scale to high bit rates, but bottlenecks with socket APl need to be removed

Must have a scheme where hardware places packet payload directly in application buffers

Better memory / buffer management scheme

Must have a solid LRO scheme from H/W - S/W GRO will not cut it

Reduce / Eliminate system calls

Simpler representation of application memory in skb as it traverses the networking stack

Resource isolation allows scale out and up

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 24

FO”OWUp g enfabrica

Be sure to catch the next talk at netdev 0x16

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED. 25

Thank You

Results with ConnectX-6

== S/WGRO == H/WLRO

W

100
P
e

Gbps

7000 8000 9000 10000

0
1000 2000 3000 4000 5000 6000

L3 MTU
27

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

