
Tuning Linux TCP for data-center networks

Yuchung Cheng <ycheng@google.com>

Linux Plumbers Conference
Dublin, Ireland, Sep 2022

1

https://lpc.events/event/16/contributions/1343/


Place Image Here

Outline

● Datacenter Networks

● TCP network performance

● TCP host performance

● TCP visibility

● The next decade TCP

2



Who we are 

3

Linux TCP & netdev contributors @ Google Network Infrastructure 

● Talal Ahmad
● Mahesh Bandewar
● Willem de Bruijn
● Shakeel Butt
● Neal Cardwell
● Yuchung Cheng
● Eric Dumazet
● Soheil Hassas Yeganeh
● Van Jacobson

● Priyaranjan Jha
● Coco Li
● Arjun Roy
● Stanislav Fomichev
● Mubashir Adnan Qureshi
● Brian Vazquez
● Wei Wang
● Kevin Yang
● Yousuk Seung

3

https://research.google/teams/network-systems/
https://research.google/teams/network-systems/


Data center networking (DCN)

Scatter & gather: correlated bursts from 

many hosts

Care about latency, CPU, and memory

Network Applications Bottlenecks

Many hosts interconnect Gbps links with 

<msec latency

ECMP to load-balance flows among links

Occur in host and networks

But usually invisible to applications

4

DCN applications’ usage critically guides TCP performance tuning



5

Aggregation
Block Border Gateway

Spine

Common DCN 3-tier Clos topology

Machine 
Rack

ToR

Other DCNs

N

Middle
blocks

Aggregation Block

A host often has many thousands 
to millions of TCP flows.

An application multiplex 
messages across them 
constantly.

A flow idles and bursts.



Optimize TCP network performance

Minimize restart overhead

● Use persistent connection and TCP Fast Open

● Disable slow start after idle

(sysctl net.ipv4.tcp_slow_start_after_idle = 0) 

Reduce queuing delays and bursts, improve network entropy 

● Replace pfifo with fq/pacing qdisc

Max BW utilization with minimal queue

● Use DCTCP or BBRv2 congestion control

BBRv2

Cubic

6

https://github.com/google/bbr


Dynamic TCP flowlet to avoid 
congestion or link failures

Use Linux TCP feature on IPv6 Flow-Label (RFC6437)

Enable the switches to route with FL in addition to 4-tuples plus ECN

1. TCP flow experiences high ECN [1] or RTO [2] upon congestion or link failures

2. TCP flow re-randomize sk->hash and IPv6 flow-label 

3. TCP flow changes its path

4. Repeat 1-3 until no further RTO or ECN

[1] PLB, SIGCOMM 2022
[2]: Default on since kernel 4.x

Src host

Dst host

Step 1
Congestion or 
link failure

Step 2
sk_rethink_hash()
FL: 0x123 -> FL: 0x45

Step 3
Moves to 
better path

7



Reduce the (long) round-trips!

Use persistent connections and 

disable slow-start after idle

Use RACK-TLP (default) to 

maximize Fast Recovery instead 

of RTO

Tuning TCP WAN performance

Latency Throughput

● Internet / customer traffic

● Latency sensitive data and 

controller traffic

● Throughput sensitive data 

replication

Use BBRv2 congestion control

Resize TCP max send and receive 

buffer size to twice of target BDP
(sysctl net.ipv4.tcp_[rw]mem)

Disable tcp_peer_metrics that cause 

early slow-start exit
(sysctl net.ipv4.tcp_metrics_save=0)

8



Optimize TCP 
CPU & memory efficiency



TCP bottlenecks in the host

● Copies upon send and receive are expensive

(CPU & Memory bandwidth)

● Userspace and kernel processes handling the same socket can be 

scheduled on different CPUs

● Userspace threads can be woken up many times

before they can actually do useful work

● System call overheads NIC

Application

Kernel

Thread
Affinity

Copy on 
Send

Per-Packet 
Overheads

Notifications

Buffer 
allocation

10



Thread Affinity

- TCP tries to process packets on the same CPU where the user thread is expected to read/write the data

- See receive flow steering as an example

- The heuristics are very simple:

- Set the core ID of the socket when recvmsg and sendmsg are called

- TCP used to set the core ID on poll, which we removed

- These heuristics won't work without orchestration:

- Scheduler can move user-space threads around, the previous user space thread may get blocked, pinning 

doesn't work for all processes, ...

- Orchestrating userspace and kernel affinities we observe 10%+ gains in efficiency and latency:

- Try to process TCP events on the same core both in userspace and the kernel

11



Example: costs during packet reception

CPU 0 CPU 1

PCIe PCIe

Memory Memory

(Arrow thickness correlates with bandwidth) 12



Example: costs during packet reception

CPU 0 CPU 1

PCIe PCIe

Memory Memory

Rx

Rx

Rx Rx

Rx

(Arrow thickness correlates with bandwidth) 13



Example: costs during packet reception

CPU 0 CPU 1

PCIe PCIe

Memory Memory

Rx

Rx

Rx Rx

Rx

(Arrow thickness correlates with bandwidth)

Extra bandwidth costs

SoftIRQ on CPU0,
User code on CPU,
Cycles for extra copy

Multiple 
sysenter()

14



Kernel memory

Network

(4) Packet 
transmission

(IP + TCP processing, 
schedule packet)

RPC stack memory

Application

(sendmsg() called by user process)

(1) Application sends RPC

(3) DMA(2) copy_from_user

EXPENSIVE, use Tx0cp

Network

Kernel memory RPC stack memory

Application

(1) Packet reception

(IP + TCP processing, 
enqueue packet, wake user)

(recvmsg() called by user process)

(4) Application code invoked

(2) DMA (3) copy_to_user

EXPENSIVE, use Rx0cp

15



Application-sensible TCP telemetry



Hard to infer from existing TCP connection 
stats (TCP_INFO)

The TCP flow of the response has an 
average RTT of 10 ms, 3% loss, average 
congestion window of 31 pkt, ...

New approach: stats associated with application 
message (SO_TIMESTAMPING)

Your RPC response took 45ms to deliver by TCP 
with 2% of losses. 30ms out of 45ms was spent on 
the actual network.

What’s the network performance of my RPCs?

17



Major events recorded for TCP via SO_TIMESTAMPING 

TCP ReceiverTCP Sender

TCP queuing

Time in network

Qdisc latency

sendmsg()

Enters qdisc
(cwnd, rate, retx, rtt, ...)

Sent by the driver/hardware
(cwnd, rate, retx, rtt, ...)

Acknowledged
(cwnd, rate, retx, rtt, ...)

Received by 
driver/hardware

Receiver delay

SCHEDULED

TX_SOFTWARE
TX_HARDWARE

ACKNOWLEDGED

RX_SOFTWARE
RX_HARDWARE

OPT_STATS

18



Application sensible RPC & TCP telemetry

Client
service

Channel 
Queue

Channel 
Buffer TCP FQ/

Pacing NIC NIC/
TCP

Server
Channel

 RPC request
enqueued RPC request

serialized Written to
socket Enqueued in

FQ/Pacing

Sent to
driver

Server
service

RPC request
deserialized

Read
from socket

client start
client send

server receive
server start

Serve RPC

SENDMSG
SCHEDULED

SENT

ACKED

RPC response
serialized server finish

server send

RPC response
deserialized

Acknowledgement received

client receive

Read
from socket

client finish

Response transmitted (Same Fathom instrumentation omitted)

Service RPC Kernel Network Kernel RPC Service

Client
service

Channel 
Queue

Channel 
Buffer TCP FQ/

Pacing NIC NIC/
TCP

Server
Channel

Server
service

19



Many more TCP optimizations
● TCP memory isolation and performance

○ “TCP memory isolation on multi-tenant servers” talk in LPC Referred Track on Tuesday at 3:45pm

● TCP tx zerocopy and thread affinity (IETF 102 tcpm, 2018)

● BIG TCP: bigger TSO/GRO for +200Gbps networks (netdev 0x15, 2021)

● TCP BBR.swift: a delay based DCN-optimized extension of BBRv2 (IETF 109 iccrg, 2020)

● TCP silent close: FIN flood upon server restart could be a bad move (IETF 112 tcpm 2021)

● Multi-path TCP

○ Tuesday talk at 5:30pm

● Reduce TCP default min_RTO of 200ms (Work in progress)

● TCP microsecond based timestamp options (ask Eric Dumazet)

● And many more … 

20

https://lpc.events/event/16/contributions/1212/
https://datatracker.ietf.org/meeting/102/materials/slides-102-tcpm-making-tcp-fast-00
https://netdevconf.info/0x15/session.html?BIG-TCP
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://datatracker.ietf.org/meeting/112/materials/slides-112-tcpm-tcp-silent-close-for-cases-where-silence-is-golden-00


Conclusion
- Linux TCP can be optimized substantially for datacenter networks

- Better congestion control, pacing & mixing, dynamic flowlet

- Network, CPU, memory performance are all important

- Its performance depends vastly on how applications use TCP

- There is no way to guarantee affinity without user-space 

orchestration

- Guide optimizations via application-sensible TCP telemetry

- Linux TCP is highly extensible to meet future challenges

- ebpf, io_uring, congestion control, MPTCP

- Must care complexity and prevent death of a thousand paper 

cuts

Sample challenges

● Application data-unit (ADU) awareness

○ E.g., Congestion control and EPOLLINs 

should be frame-aware.

● Process small ADUs to/from many sockets at once

○ Scalable event handling interface

● Easier protocol extension to evolve

○ New IETF TCP option number takes years

21


